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Independent random variables on the n-dimensional torus.
Aleksandrov-Clark measures and Ahern measures.
Pointwise products between n independent lighthouses
yield positive crystalline measures on Rn (P.Kurasov and
P.Sarnak).
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Kolmogorov’s definition of independence

In his famous book Foundations of the theory of probability
Kolmogorov wrote:

The purpose of this monograph is to give an axiomatic
foundation for the theory of probability. . . . This task would have
been a rather hopeless one before the introduction of
Lebesgue’s theories of measure and integration.
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However, after Lebesgue’s publication of his investigations, the
analogies between measure of a set and probability of an event,
and between integral of a function and mathematical
expectation of a random variable, became apparent.

These analogies allowed further extensions; thus for example
various properties of independent random variables were
seen to be in complete analogy with the corresponding
properties of orthogonal functions.
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Burkholder-Gundy

In the sixties Paul-André Meyer and I were trying to bridge
the gap between martingales and Littlewood-Paley
decompositions.
We failed but it led to the famous Burkholder-Gundy
inequalities.

Y. Meyer
INDEPENDENCE, from Kolmogorov to the construction of crystalline measures
5 / 33



Riesz products

A beautiful example is given by a Riesz product
µ =

∏∞
0 (1 + r cos3kx), −1 ≤ r ≤ 1.

Lacunary implies independence.
The integral of the product is the product of the integrals.
Another example is given by Le principe des soucoupes.
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Independent random variables on the
n-dimensional torus

Let T denote the group of complex numbers z of modulus 1 and
let Tn be the n-dimensional torus.

Then T = R/Z and T are identified by the canonical
isomorphism θ 7→ exp2πiθ.

The Fourier series expansion of a function f ∈ L2(T) is
f (x) =

∑
k∈Z a(k) exp2πikx while the Fourier series expansion of

a function f ∈ L2(T) is f (z) =
∑

k∈Z a(k)zk .
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Generalized inner functions

A proper cone S ⊂ Rn is a closed convex cone which does not
contain a full line.

Definition
Let S ⊂ Rn be a proper cone. We denote by L2

S the subspace of
L2(Tn) consisting of all square integrable functions on the
n-dimensional torus whose Fourier coefficients vanish outside
S. We write f ∈ IS if f ∈ L2

S and if |f (x)| = 1 almost everywhere
on Tn. If S is a proper cone and if f ∈ IS then f is called a
generalized inner function.

A trivial example is f (z) = zm1
1 · · · zmn

n , zj = exp(2πiθj), when
m = (m1, · · · ,mn) ∈ S.
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Lemma
Let S be a proper cone. Then IS is closed under pointwise
multiplication. Moreover f ∈ IS implies f−1 = f ∈ I(−S).

This is obvious since S + S ⊂ S.
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If H = {x ; xj ≥ 0,1 ≤ j ≤ n} then IH is the set of standard inner
function on Tn. Let Dn ⊂ Cn be the polydisc defined by
|zj | ≤ 1,1 ≤ j ≤ n. Then Tn ⊂ Cn is the distinguished boundary
of Dn.

Lemma
We have f ∈ IH if and only if f (z) is the trace on Tn of an
holomorphic function F ∈ H∞(Dn) and if |f (z)| = 1 almost
everywhere on Tn.

Strictly speaking f ∈ IH is defined on Tn and shall be moved on
Tn.
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Walter Rudin and E.L. Stout proved that any smooth
standard inner function f on Tn is a rational function:
f = Q/P where P and Q are two polynomials and P does
not vanish on Dn.

Moreover we have Q(z) = M(z)P∗(1/z) where M is a
monomial and the coefficients of the polynomial P∗ are
conjugates of the coefficients of P.
Finally 1/z = (1/z1, ...,1/zm).

It implies that any smooth generalized inner function is a
rational function.
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Independent proper cones

Definition
Let 2 ≤ m ≤ n. The proper cones S1, . . . ,Sm are independent
over Q if the following property holds: whenever m vectors
x(1) ∈ Zn, . . . , x(m) ∈ Zn, satisfy

x(j) ∈ Sj , x(j) ̸= 0, 1 ≤ j ≤ m, (1)

then these vectors x(1), . . . , x(m) are linearly independent over
Q.

If S1, . . . ,Sm are m independent proper cones, then
±S1, . . . ,±Sm are also m independent proper cones.
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A stronger definition of independence is the following:

Definition
Let 2 ≤ m ≤ n. The proper cones S1, . . . ,Sm are independent
over R if the following property holds: whenever m vectors
x(1) ∈ Rn, . . . , x(m) ∈ Rn, satisfy x(j) ∈ Sj , x(j) ̸= 0, 1 ≤ j ≤ m,
then these vectors x(1), . . . , x(m) are linearly independent over
R.
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The theorem

The n-dimensional torus is now viewed as a probability space
where the probability measure is the Haar measure dx
normalized by

∫
Tn d x = 1.

Theorem
Let 2 ≤ m ≤ n and let S1, . . . ,Sm be m proper cones. Then the
following two properties are equivalent ones:
(a) The m proper cones S1, . . . ,Sm are independent over Q.
(b) ∀f1 ∈ IS1 , . . . ,∀fm ∈ ISm these inner functions f1, . . . , fm are

m independent random variables on Tn.
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Loewner’s lemma
If
∫
Tn fj(x)dx = 0,1 ≤ j ≤ m, we have a stronger result. The

random variables f1, . . . , fm are independent and identically
distributed on Tn and the pushforward measure of the Haar
measure on Tn by F = (f1, . . . , fm) is the Haar measure on Tm.
Loewner’s lemma (Lemma 3) is the one dimensional case
(m = 1) of this result.

Lemma
Let f be a standard inner function on Tn such that f (0) = 0 and
let g be a continuous function on T. Let dλn be the Haar
measure on Tn. Then∫

Tn
g ◦ f dλn =

∫
T

g dλ1. (2)
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The functions f (z) = 3z1z2
2+z1+z2

2
3+z1+z2

2
and g(z) = z1/z2 are two

independent random variables on T2.

Indeed in this example the cone S is the first quadrant while T is
defined by x2 = −x1 and x1 ≥ 0.
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Construction of Ahern measures on Tn.
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A proper double cone T ⊂ Rn is defined as T = S ∪ (−S) where
S is a proper cone.

Definition
A signed measure µ on Tn is an Ahern measure if there exists a
proper double cone T such that for any k ∈ Zn we have µ̂(k) = 0
unless k ∈ T .
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Aleksandrov-Clark measures are Ahern measures.
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Aleksandrov-Clark measures are Ahern
measures

Let S be a proper cone and let J ∈ IS be a generalized inner
function on Tn. Let γ =

∫
Tn J(x)dx . We obviously have |γ| ≤ 1. If

|γ| = 1 then J is a constant function. From now on this is
excluded.

Theorem
Let J ∈ IS be a generalized inner function on Tn. Let
γ =

∫
Tn J(x)dx and let us assume that |γ| < 1. Let ν be a Radon

measure on T, Then µ = ν ◦ J is a Ahern measure on Tn and

∥ν ◦ J∥ ≤ 1 + |γ|
1 − |γ|

∥ν∥. (6)
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Here ∥ν∥ denotes the total mass of the measure ν.
When J is a standard inner function on the unit circle T and
when ν is the Dirac measure at τ, |τ | = 1, then µτ = ν ◦ J is
a standard Aleksandov-Clark measure [2].
We first define ν ◦ J.

Definition
Let

∑
k∈Z ckzk be the Fourier series expansion of ν. Then the

series ∑
k∈Z

ckJk (7)

converges in the distributional sense to a Radon measure on Tn

denoted by ν ◦ J.

We now show that µ is an Ahern measure.
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Lemma
Let J ∈ IS be a generalized inner function on Tn and let ν be a
positive Radon measure on T. Then the Fourier coefficients
µ̂(m) of µ = ν ◦ J vanish if m /∈ S ∪ (−S).

Indeed we have µ = ν ◦ J =
∑

k∈Z ckJk . But the Fourier
coefficients of Jk vanish outside S if k ≥ 1 and outside −S if
k ≤ −1 which ends the proof.
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Geometrical structure of Aleksandrov-Clark
measures

Lemma
Let J be a smooth inner function and let K be the compact
support of ν. Then the measure µ = ν ◦ J is supported by
UK = {x ; J(x) ∈ K}.

Lemma
Let J ∈ C∞(Tn,T). Let |τ | = 1 and let us assume that ∇J(x) ̸= 0
everywhere on the level set Uτ = {x : J(x) = τ}. Then the
measure µτ = δτ ◦ J makes sense, it is absolutely continuous
with respect to the surface measure dσ on Uτ and we have
µτ = |∇J|−1dσ.
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Construction of crystalline measures

Definition
A “lighthouse" [6] is a positive Radon measure on Rn which is
supported by a closed set F of zero Lebesgue measure and
whose distributional Fourier transform is supported by a proper
double cone T .

A proper double cone T is defined as T = S ∪ (−S) where
S is a proper cone.
We now consider the Aleksander-Clark measure µτ = δτ ◦ J
of the preceding Lemma as a periodic measure on Rn. If the
measure of the level set Uτ is 0 then µτ is a lighthouse.
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Turning around

Lemma
Let T ⊂ Rn be an arbitrary proper cone. Then for any
A ∈ GL(n,R) and any lighthouse (µ,T ) the measure µ ◦ A is a
lighthouse and its Fourier transform is supported by A∗(T ).
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Pointwise product between m weakly
independent lighthouses

Definition
Let 2 ≤ m ≤ n. The lighthouses (µ1,T1), · · · , (µm,Tm) are
weakly independent if the proper double cones T1, · · · ,Tm are
independent over R.

Theorem
Let 2 ≤ m ≤ n. Let (µ1,T1), . . . , (µm,Tm) be m weakly
independent lighthouses. Then the pointwise product
µ = µ1 · · ·µm is a positive measure. The support of µ is
contained in the intersection ∩m

1 Fj where Fj is the closed support
of µj . Moreover if each µ̂j ,1 ≤ j ≤ m, is an atomic measure
supported by a locally finite set then the same is true for µ̂.
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Crystalline measures

A crystalline measure is an atomic measure µ enjoying the
following three properties: (a) the support of µ is locally finite,
(b) µ is a tempered distribution and (c) the distributional Fourier
transform of µ is also an atomic measure carried by a locally
finite set.
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Recipe

We start with a standard smooth inner function J.
We consider the corresponding Aleksandrov-Clark measure
µ = δτ ◦ J.
We use the turning Lemma to obtain n independent proper
cones A∗

j (T ).

We consider µj = µ ◦ Aj .

Theorem
The pointwise product µ = µ1 · · ·µn is a crystalline measure if
and only if the support of µ is locally finite.

This geometric condition is easily checked since these µj

are Aleksandrov-Clark measures.
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Hörmander’s seminal work

The pointwise product u v between two tempered distributions
u, v ∈ S ′(Rn) does not exist in general. However this product
exists if the two distributions u and v are independent in a sense
given by two-microlocal analysis. Here is a tentative definition of
the pointwise product of two tempered distributions. Let φ and ψ
be two functions in the Schwartz class S(Rn) such that

∫
φ = 1,∫

ψ = 1, and let φϵ, 0 < ϵ ≤ 1, be given by φϵ(x) = ϵ−nφ(x/ϵ).
The family ψϵ, 0 < ϵ ≤ 1, is defined similarly.
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Hörmander’s seminal work

Definition
Let u and v be two tempered distributions. Let us assume that
(i) the pointwise product (u ∗ φϵ)(v ∗ ψϵ) tends to a limit in S ′(Rn)
as ϵ tends to 0 and (ii) that this limit does not depend on the
choices of φ and ψ. Then the pointwise product uv between u
and v exists and is defined by

u v = lim
ϵ→0

(u ∗ φϵ)(v ∗ ψϵ). (8)
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Hörmander’s seminal work

Theorem
Let S and T be two closed cones such that S ∩ (−T ) = {0}. If u
and v are two tempered distributions on Rn, if û is supported by
S, and if v̂ is supported by T then the pointwise product uv
makes sense. Moreover if uj ⇀ u and vj ⇀ v then ujvj ⇀ uv .
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