INDEPENDENCE, from Kolmogorov to the construction of crystalline measures

Yves Meyer

Paris, November 8, 2024

• Independent random variables on the *n*-dimensional torus.

- Aleksandrov-Clark measures and Ahern measures.
- Pointwise products between *n* independent lighthouses yield positive crystalline measures on ℝⁿ (P.Kurasov and P.Sarnak).

• Independent random variables on the *n*-dimensional torus.

- Aleksandrov-Clark measures and Ahern measures.
- Pointwise products between *n* independent lighthouses yield positive crystalline measures on ℝⁿ (P.Kurasov and P.Sarnak).

- Independent random variables on the *n*-dimensional torus.
- Aleksandrov-Clark measures and Ahern measures.
- Pointwise products between *n* independent lighthouses yield positive crystalline measures on ℝⁿ (P.Kurasov and P.Sarnak).

Kolmogorov's definition of independence

In his famous book **Foundations of the theory of probability** Kolmogorov wrote:

The purpose of this monograph is to give an axiomatic foundation for the theory of probability.... This task would have been a rather hopeless one before the introduction of Lebesgue's theories of measure and integration.

However, after Lebesgue's publication of his investigations, the analogies between measure of a set and probability of an event, and between integral of a function and mathematical expectation of a random variable, became apparent.

These analogies allowed further extensions; thus for example various properties of independent random variables were seen to be in complete analogy with the corresponding properties of orthogonal functions.

Burkholder-Gundy

- In the sixties Paul-André Meyer and I were trying to bridge the gap between martingales and Littlewood-Paley decompositions.
- We failed but it led to the famous Burkholder-Gundy inequalities.

Riesz products

- A beautiful example is given by a Riesz product $\mu = \prod_{0}^{\infty} (1 + r \cos 3^{k} x), -1 \le r \le 1.$
- Lacunary implies independence.
- The integral of the product is the product of the integrals.
- Another example is given by Le principe des soucoupes.

Independent random variables on the *n*-dimensional torus

Let **T** denote the group of complex numbers *z* of modulus 1 and let \mathbf{T}^n be the *n*-dimensional torus.

Then $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ and **T** are identified by the canonical isomorphism $\theta \mapsto \exp 2\pi i\theta$.

The Fourier series expansion of a function $f \in L^2(\mathbb{T})$ is $f(x) = \sum_{k \in \mathbb{Z}} a(k) \exp 2\pi i k x$ while the Fourier series expansion of a function $f \in L^2(\mathbb{T})$ is $f(z) = \sum_{k \in \mathbb{Z}} a(k) z^k$.

Generalized inner functions

A proper cone $S \subset \mathbb{R}^n$ is a closed convex cone which does not contain a full line.

Definition

Let $S \subset \mathbb{R}^n$ be a proper cone. We denote by L_S^2 the subspace of $L^2(\mathbb{T}^n)$ consisting of all square integrable functions on the *n*-dimensional torus whose Fourier coefficients vanish outside *S*. We write $f \in \mathcal{I}_S$ if $f \in L_S^2$ and if |f(x)| = 1 almost everywhere on \mathbb{T}^n . If *S* is a proper cone and if $f \in \mathcal{I}_S$ then *f* is called a generalized inner function.

A trivial example is $f(z) = z_1^{m_1} \cdots z_n^{m_n}, z_j = \exp(2\pi i\theta_j)$, when $m = (m_1, \cdots, m_n) \in S$.

Lemma

Let *S* be a proper cone. Then \mathcal{I}_S is closed under pointwise multiplication. Moreover $f \in \mathcal{I}_S$ implies $f^{-1} = \overline{f} \in \mathcal{I}_{(-S)}$.

This is obvious since $S + S \subset S$.

If $H = \{x; x_j \ge 0, 1 \le j \le n\}$ then \mathcal{I}_H is the set of standard inner function on \mathbb{T}^n . Let $\mathbb{D}^n \subset \mathbb{C}^n$ be the polydisc defined by $|z_j| \le 1, 1 \le j \le n$. Then $\mathbf{T}^n \subset \mathbb{C}^n$ is the distinguished boundary of \mathbb{D}^n .

Lemma

We have $f \in \mathcal{I}_H$ if and only if f(z) is the trace on \mathbf{T}^n of an holomorphic function $F \in H^{\infty}(\mathbb{D}^n)$ and if |f(z)| = 1 almost everywhere on \mathbf{T}^n .

Strictly speaking $f \in \mathcal{I}_H$ is defined on \mathbb{T}^n and shall be moved on \mathbf{T}^n .

- Walter Rudin and E.L. Stout proved that any smooth standard inner function *f* on **T**ⁿ is a rational function:
 f = *Q*/*P* where *P* and *Q* are two polynomials and *P* does not vanish on Dⁿ.
- Moreover we have Q(z) = M(z)P*(1/z) where M is a monomial and the coefficients of the polynomial P* are conjugates of the coefficients of P.

• Finally
$$1/z = (1/z_1, ..., 1/z_m)$$
.

 It implies that any smooth generalized inner function is a rational function.

Independent proper cones

Definition

Let $2 \le m \le n$. The proper cones S_1, \ldots, S_m are independent over \mathbb{Q} if the following property holds: whenever *m* vectors $x(1) \in \mathbb{Z}^n, \ldots, x(m) \in \mathbb{Z}^n$, satisfy

$$x(j) \in S_j, \ x(j) \neq 0, \ 1 \leq j \leq m, \tag{1}$$

then these vectors $x(1), \ldots, x(m)$ are linearly independent over \mathbb{Q} .

If S_1, \ldots, S_m are *m* independent proper cones, then $\pm S_1, \ldots, \pm S_m$ are also *m* independent proper cones.

A stronger definition of independence is the following:

Definition

Let $2 \le m \le n$. The proper cones S_1, \ldots, S_m are independent over \mathbb{R} if the following property holds: whenever *m* vectors $x(1) \in \mathbb{R}^n, \ldots, x(m) \in \mathbb{R}^n$, satisfy $x(j) \in S_j, x(j) \ne 0, 1 \le j \le m$, then these vectors $x(1), \ldots, x(m)$ are linearly independent over \mathbb{R} .

The theorem

The *n*-dimensional torus is now viewed as a probability space where the probability measure is the Haar measure dx normalized by $\int_{\mathbb{T}^n} dx = 1$.

Theorem

Let $2 \le m \le n$ and let S_1, \ldots, S_m be *m* proper cones. Then the following two properties are equivalent ones:

- (a) The m proper cones S_1, \ldots, S_m are independent over \mathbb{Q} .
- (b) $\forall f_1 \in \mathcal{I}_{S_1}, \ldots, \forall f_m \in \mathcal{I}_{S_m}$ these inner functions f_1, \ldots, f_m are *m* independent random variables on \mathbb{T}^n .

Loewner's lemma

If $\int_{\mathbb{T}^n} f_j(x) dx = 0, 1 \le j \le m$, we have a stronger result. The random variables f_1, \ldots, f_m are independent and identically distributed on \mathbb{T}^n and the pushforward measure of the Haar measure on \mathbb{T}^n by $F = (f_1, \ldots, f_m)$ is the Haar measure on \mathbb{T}^m . Loewner's lemma (Lemma 3) is the one dimensional case (m = 1) of this result.

Lemma

Let *f* be a standard inner function on \mathbb{T}^n such that f(0) = 0 and let *g* be a continuous function on **T**. Let $d\lambda_n$ be the Haar measure on \mathbb{T}^n . Then

$$\int_{\mathbb{T}^n} g \circ f \, d\lambda_n = \int_{\mathbf{T}} g \, d\lambda_1. \tag{2}$$

The functions $f(z) = \frac{3z_1z_2^2+z_1+z_2^2}{3+z_1+z_2^2}$ and $g(z) = z_1/z_2$ are two independent random variables on **T**².

Indeed in this example the cone *S* is the first quadrant while *T* is defined by $x_2 = -x_1$ and $x_1 \ge 0$.

Construction of Ahern measures on \mathbb{T}^n .

A proper double cone $T \subset \mathbb{R}^n$ is defined as $T = S \cup (-S)$ where S is a proper cone.

Definition

A signed measure μ on \mathbb{T}^n is an Ahern measure if there exists a proper double cone T such that for any $k \in \mathbb{Z}^n$ we have $\widehat{\mu}(k) = 0$ unless $k \in T$.

Aleksandrov-Clark measures are Ahern measures.

Aleksandrov-Clark measures are Ahern measures

Let *S* be a proper cone and let $J \in \mathcal{I}_S$ be a generalized inner function on \mathbb{T}^n . Let $\gamma = \int_{\mathbb{T}^n} J(x) \, dx$. We obviously have $|\gamma| \leq 1$. If $|\gamma| = 1$ then *J* is a constant function. From now on this is excluded.

Theorem

Let $J \in \mathcal{I}_S$ be a generalized inner function on \mathbb{T}^n . Let $\gamma = \int_{\mathbb{T}^n} J(x) dx$ and let us assume that $|\gamma| < 1$. Let ν be a Radon measure on **T**, Then $\mu = \nu \circ J$ is a Ahern measure on \mathbb{T}^n and

$$\|\nu \circ J\| \le \frac{1+|\gamma|}{1-|\gamma|} \|\nu\|.$$
 (6)

- Here $\|\nu\|$ denotes the total mass of the measure ν .
- When J is a standard inner function on the unit circle T and when ν is the Dirac measure at τ, |τ| = 1, then μ_τ = ν ∘ J is a standard Aleksandov-Clark measure [2].
- We first define $\nu \circ J$.

Definition

Let $\sum_{k \in \mathbb{Z}} c_k z^k$ be the Fourier series expansion of ν . Then the series

$$\sum_{k\in\mathbb{Z}}c_kJ^k\tag{7}$$

converges in the distributional sense to a Radon measure on \mathbb{T}^n denoted by $\nu \circ J$.

• We now show that μ is an Ahern measure.

Lemma

Let $J \in \mathcal{I}_S$ be a generalized inner function on \mathbb{T}^n and let ν be a positive Radon measure on **T**. Then the Fourier coefficients $\widehat{\mu}(m)$ of $\mu = \nu \circ J$ vanish if $m \notin S \cup (-S)$.

Indeed we have $\mu = \nu \circ J = \sum_{k \in \mathbb{Z}} c_k J^k$. But the Fourier coefficients of J^k vanish outside S if $k \ge 1$ and outside -S if $k \le -1$ which ends the proof.

Geometrical structure of Aleksandrov-Clark measures

Lemma

Let J be a smooth inner function and let K be the compact support of ν . Then the measure $\mu = \nu \circ J$ is supported by $U_K = \{x; J(x) \in K\}.$

Lemma

Let $J \in C^{\infty}(\mathbb{T}^n, \mathbf{T})$. Let $|\tau| = 1$ and let us assume that $\nabla J(x) \neq 0$ everywhere on the level set $U_{\tau} = \{x : J(x) = \tau\}$. Then the measure $\mu_{\tau} = \delta_{\tau} \circ J$ makes sense, it is absolutely continuous with respect to the surface measure $d\sigma$ on U_{τ} and we have $\mu_{\tau} = |\nabla J|^{-1} d\sigma$.

Construction of crystalline measures

Definition

A "lighthouse" [6] is a **positive** Radon measure on \mathbb{R}^n which is supported by a closed set *F* of zero Lebesgue measure and whose distributional Fourier transform is supported by a proper double cone *T*.

- A proper double cone *T* is defined as *T* = *S* ∪ (−*S*) where *S* is a proper cone.
- We now consider the Aleksander-Clark measure μ_τ = δ_τ ∘ J of the preceding Lemma as a periodic measure on ℝⁿ. If the measure of the level set U_τ is 0 then μ_τ is a lighthouse.

Turning around

Lemma

Let $T \subset \mathbb{R}^n$ be an arbitrary proper cone. Then for any $A \in GL(n, \mathbb{R})$ and any lighthouse (μ, T) the measure $\mu \circ A$ is a lighthouse and its Fourier transform is supported by $A^*(T)$.

Pointwise product between *m* weakly independent lighthouses

Definition

Let $2 \le m \le n$. The lighthouses $(\mu_1, T_1), \dots, (\mu_m, T_m)$ are weakly independent if the proper double cones T_1, \dots, T_m are independent over \mathbb{R} .

Theorem

Let $2 \le m \le n$. Let $(\mu_1, T_1), \ldots, (\mu_m, T_m)$ be m weakly independent lighthouses. Then the pointwise product $\mu = \mu_1 \cdots \mu_m$ is a positive measure. The support of μ is contained in the intersection $\cap_1^m F_j$ where F_j is the closed support of μ_j . Moreover if each $\hat{\mu}_j, 1 \le j \le m$, is an atomic measure supported by a locally finite set then the same is true for $\hat{\mu}$.

Crystalline measures

A crystalline measure is an atomic measure μ enjoying the following three properties: (*a*) the support of μ is locally finite, (*b*) μ is a tempered distribution and (*c*) the distributional Fourier transform of μ is also an atomic measure carried by a locally finite set.

Recipe

- We start with a standard smooth inner function *J*.
- We consider the corresponding Aleksandrov-Clark measure $\mu = \delta_{\tau} \circ J$.
- We use the turning Lemma to obtain *n* independent proper cones A^{*}_j(T).

• We consider
$$\mu_j = \mu \circ A_j$$
.

Theorem

The pointwise product $\mu = \mu_1 \cdots \mu_n$ is a crystalline measure if and only if the support of μ is locally finite.

This geometric condition is easily checked since these μ_j are Aleksandrov-Clark measures.

Hörmander's seminal work

The pointwise product u v between two tempered distributions $u, v \in S'(\mathbb{R}^n)$ does not exist in general. However this product exists if the two distributions u and v are independent in a sense given by two-microlocal analysis. Here is a tentative definition of the pointwise product of two tempered distributions. Let φ and ψ be two functions in the Schwartz class $S(\mathbb{R}^n)$ such that $\int \varphi = 1$, $\int \psi = 1$, and let φ_{ϵ} , $0 < \epsilon \leq 1$, be given by $\varphi_{\epsilon}(x) = \epsilon^{-n}\varphi(x/\epsilon)$. The family ψ_{ϵ} , $0 < \epsilon \leq 1$, is defined similarly.

Hörmander's seminal work

Definition

Let *u* and *v* be two tempered distributions. Let us assume that (*i*) the pointwise product $(u * \varphi_{\epsilon})(v * \psi_{\epsilon})$ tends to a limit in $\mathcal{S}'(\mathbb{R}^n)$ as ϵ tends to 0 and (*ii*) that this limit does not depend on the choices of φ and ψ . Then the pointwise product *uv* between *u* and *v* exists and is defined by

$$\boldsymbol{u}\,\boldsymbol{v} = \lim_{\epsilon \to 0} (\boldsymbol{u} \ast \varphi_{\epsilon})(\boldsymbol{v} \ast \psi_{\epsilon}). \tag{8}$$

Hörmander's seminal work

Theorem

Let *S* and *T* be two closed cones such that $S \cap (-T) = \{0\}$. If *u* and *v* are two tempered distributions on \mathbb{R}^n , if \hat{u} is supported by *S*, and if \hat{v} is supported by *T* then the pointwise product *uv* makes sense. Moreover if $u_i \rightharpoonup u$ and $v_i \rightharpoonup v$ then $u_i v_i \rightharpoonup uv$.

- P.Ahern. *Inner functions in the polydisc and measures on the torus.* Michigan Math. J. 20 (1973).
- D.Clark. One dimensional perturbations of restricted shifts.
 J. Anal. Math. 25 (1972) 169–191.
- L.Hörmander. The analysis of linear partial differential operators: I Distribution Theory and Fourier Analysis 2nd edn (1990) Springer.
- A.Kolmogorov. Foundation of the Theory of Probability.

- P.Kurasov and P.Sarnak. Stable polynomials and crystalline measures. J. Math. Phys. 61, 083501 (2020)
- Y.Meyer *Crystalline measures and wave front sets.* Volume in hommage to Guido Weiss.
- Y.Meyer *Multidimensional crystalline measures.* Trans. R. Norw. Soc. Sci. Lette. (2023) 1-24.
- W.Rudin. *Function theory in the polydiscs*. Benjamin, New York, 1969.
- W.Rudin and L.E. Stout. Boundary properties of functions of several complex variables. Journal of Mathematics and Mechanics. (1965) 991-1005.