INDEPENDENCE, from Kolmogorov to the construction of crystalline measures

Yves Meyer

Paris, November 8, 2024

Independent random variables on the *n*-dimensional torus. \bullet

- Aleksandrov-Clark measures and Ahern measures.
- Pointwise products between *n* independent lighthouses yield positive crystalline measures on R *n* (P.Kurasov and P.Sarnak).

Independent random variables on the *n*-dimensional torus. \bullet

- Aleksandrov-Clark measures and Ahern measures.
- Pointwise products between *n* independent lighthouses yield positive crystalline measures on R *n* (P.Kurasov and P.Sarnak).
- Independent random variables on the *n*-dimensional torus. \bullet
- **Aleksandrov-Clark measures and Ahern measures.**
- **•** Pointwise products between *n* independent lighthouses yield positive crystalline measures on R *n* (P.Kurasov and P.Sarnak).

Kolmogorov's definition of independence

In his famous book **Foundations of the theory of probability** Kolmogorov wrote:

The purpose of this monograph is to give an axiomatic foundation for the theory of probability. . . . This task would have been a rather hopeless one before the introduction of Lebesgue's theories of measure and integration.

However, after Lebesgue's publication of his investigations, the analogies between measure of a set and probability of an event, and between integral of a function and mathematical expectation of a random variable, became apparent.

These analogies allowed further extensions; **thus for example various properties of independent random variables were seen to be in complete analogy with the corresponding properties of orthogonal functions.**

Burkholder-Gundy

- In the sixties Paul-André Meyer and I were trying to bridge the gap between martingales and Littlewood-Paley decompositions.
- We failed but it led to the famous Burkholder-Gundy inequalities.

Riesz products

- A beautiful example is given by a Riesz product $\mu = \prod_0^{\infty} (1 + r \cos 3^k x), -1 \le r \le 1.$
- Lacunary implies independence.
- The integral of the product is the product of the integrals.
- Another example is given by *Le principe des soucoupes.*

Independent random variables on the *n*-dimensional torus

Let **T** denote the group of complex numbers *z* of modulus 1 and let **T ⁿ** be the *n*-dimensional torus.

Then $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ and **T** are identified by the canonical isomorphism $\theta \mapsto \exp 2\pi i \theta$.

The Fourier series expansion of a function $f \in L^2(\mathbb{T})$ is $f(x)=\sum_{k\in\mathbb{Z}}\mathsf{a}(k)$ exp 2 π *ikx* while the Fourier series expansion of a function $f \in L^2(\mathbf{T})$ is $f(z) = \sum_{k \in \mathbb{Z}} a(k) z^k$.

Generalized inner functions

A proper cone $S \subset \mathbb{R}^n$ is a closed convex cone which does not contain a full line.

Definition

Let $S \subset \mathbb{R}^n$ be a proper cone. We denote by L_S^2 the subspace of $L^2(\mathbb{T}^n)$ consisting of all square integrable functions on the *n*-dimensional torus whose Fourier coefficients vanish outside *S*. We write $f \in \mathcal{I}_S$ if $f \in L_S^2$ and if $|f(x)| = 1$ almost everywhere on \mathbb{T}^n . If S is a proper cone and if $f\in\mathcal{I}_S$ then f is called a generalized inner function.

A trivial example is $f(z) = z_1^{m_1}$ $\mathbf{z}_1^{m_1}\cdots\mathbf{z}_n^{m_n}, \mathbf{z}_j=\exp(2\pi i\theta_j),$ when $m = (m_1, \cdots, m_n) \in S$.

Lemma

Let S be a proper cone. Then I*^S is closed under pointwise multiplication. Moreover f* $\in \mathcal{I}_\mathcal{S}$ *implies f*⁻¹ = $\overline{f} \in \mathcal{I}_{(-\mathcal{S})}$.

This is obvious since $S + S \subset S$.

If $H = \{x; x_i \geq 0, 1 \leq j \leq n\}$ then \mathcal{I}_H is the set of standard inner function on \mathbb{T}^n . Let $\mathbb{D}^n\subset\mathbb{C}^n$ be the polydisc defined by $|z_j| \leq 1, 1 \leq j \leq n$. Then $\mathbf{T}^n \subset \mathbb{C}^n$ is the distinguished boundary of \mathbb{D}^n .

Lemma

We have f $\in I_H$ *if and only if f*(*z*) *is the trace on* \mathbf{T}^n *of an holomorphic function* $F \in H^{\infty}(\mathbb{D}^n)$ and if $|f(z)| = 1$ almost *everywhere on* **T n** .

Strictly speaking $f \in \mathcal{I}_H$ is defined on \mathbb{T}^n and shall be moved on **T n** .

- Walter Rudin and E.L. Stout proved that any smooth standard inner function *f* on **T n** is a rational function: *f* = *Q*/*P* where *P* and *Q* are two polynomials and *P* does not vanish on \mathbb{D}^n .
- Moreover we have $Q(z) = M(z) P^*(1/z)$ where M is a monomial and the coefficients of the polynomial *P* [∗] are conjugates of the coefficients of *P*.
- Finally $1/z = (1/z_1, ..., 1/z_m)$.
- **•** It implies that any smooth generalized inner function is a rational function.

Independent proper cones

Definition

Let $2 < m < n$. The proper cones S_1, \ldots, S_m are independent over Q if the following property holds: whenever *m* vectors $x(1) \in \mathbb{Z}^n, \ldots, x(m) \in \mathbb{Z}^n$, satisfy

$$
x(j) \in S_j, \ x(j) \neq 0, \ 1 \leq j \leq m, \qquad (1)
$$

then these vectors $x(1), \ldots, x(m)$ are linearly independent over Q.

If *S*1, . . . ,*S^m* are *m* independent proper cones, then $\pm S_1, \ldots, \pm S_m$ are also *m* independent proper cones.

A stronger definition of independence is the following:

Definition

Let $2 < m < n$. The proper cones S_1, \ldots, S_m are independent over $\mathbb R$ if the following property holds: whenever *m* vectors $x(1) \in \mathbb{R}^n, \ldots, x(m) \in \mathbb{R}^n$, satisfy $x(j) \in S_j$, $x(j) \neq 0, 1 \leq j \leq m$, then these vectors $x(1), \ldots, x(m)$ are linearly independent over R.

The theorem

The *n*-dimensional torus is now viewed as a probability space where the probability measure is the Haar measure *dx* normalized by $\int_{\mathbb{T}^n} d\,x = 1.$

Theorem

Let 2 ≤ *m* ≤ *n and let S*1, . . . ,*S^m be m proper cones. Then the following two properties are equivalent ones:*

- (a) *The m proper cones* S_1, \ldots, S_m *are independent over* \mathbb{Q} .
- $($ b $)$ \forall $f_1 \in \mathcal{I}_{S_1}, \ldots, \forall$ $f_m \in \mathcal{I}_{S_m}$ these inner functions f_1, \ldots, f_m are *m* independent random variables on \mathbb{T}^n .

Loewner's lemma

If $\int_{\mathbb{T}^n} f_j(x) \, dx = 0, 1 \leq j \leq m,$ we have a stronger result. The random variables f_1, \ldots, f_m are independent and identically distributed on T *ⁿ* and the pushforward measure of the Haar measure on \mathbb{T}^n by $F = (f_1, \ldots, f_m)$ is the Haar measure on \mathbf{T}^m . Loewner's lemma (Lemma 3) is the one dimensional case $(m = 1)$ of this result.

Lemma

Let f be a standard inner function on T *ⁿ such that f*(0) = 0 *and let g be a continuous function on* **T**. *Let d*λ*ⁿ be the Haar* measure on \mathbb{T}^n . Then

$$
\int_{\mathbb{T}^n} g \circ f \, d\lambda_n = \int_{\mathbf{T}} g \, d\lambda_1. \tag{2}
$$

The functions $f(z) = \frac{3z_1z_2^2 + z_1+z_2^2}{3+z_1+z_2^2}$ and $g(z) = z_1/z_2$ are two 2 independent random variables on **T** 2 .

Indeed in this example the cone *S* is the first quadrant while *T* is defined by $x_2 = -x_1$ and $x_1 > 0$.

Construction of Ahern measures on T *n* .

A proper double cone $\mathcal{T} \subset \mathbb{R}^n$ is defined as $\mathcal{T} = \mathcal{S} \cup (-\mathcal{S})$ where *S* is a proper cone.

Definition

A signed measure μ on \mathbb{T}^n is an Ahern measure if there exists a proper double cone *T* such that for any $k \in \mathbb{Z}^n$ we have $\widehat{\mu}(k) = 0$ unless $k \in T$.

Aleksandrov-Clark measures are Ahern measures.

Aleksandrov-Clark measures are Ahern measures

Let *S* be a proper cone and let $J \in I_S$ be a generalized inner function on \mathbb{T}^n . Let $\gamma = \int_{\mathbb{T}^n} J(x) \, dx$. We obviously have $|\gamma| \leq 1$. If $|\gamma| = 1$ then *J* is a constant function. From now on this is excluded.

Theorem

Let J ∈ I*^S be a generalized inner function on* T *n* . *Let* γ = R ^T*ⁿ J*(*x*) *dx and let us assume that* |γ| < 1. *Let* ν *be a Radon measure on* **T**, *Then* µ = ν ◦ *J is a Ahern measure on* T *ⁿ and*

$$
\|\nu \circ J\| \le \frac{1+|\gamma|}{1-|\gamma|} \|\nu\|.
$$
 (6)

- Here $||v||$ denotes the total mass of the measure v .
- When *J* is a standard inner function on the unit circle T and when ν is the Dirac measure at τ , $|\tau|=1$, then $\mu_{\tau} = \nu \circ J$ is a standard Aleksandov-Clark measure [2].
- We first define ν *J*.

Definition

Let $\sum_{k\in\mathbb{Z}}c_kz^k$ be the Fourier series expansion of ν . Then the series

$$
\sum_{k\in\mathbb{Z}}c_kJ^k\qquad \qquad (7)
$$

converges in the distributional sense to a Radon measure on T *n* denoted by *ν* ∘ *J*.

• We now show that μ is an Ahern measure.

Lemma

Let J ∈ I*^S be a generalized inner function on* T *ⁿ and let* ν *be a positive Radon measure on* **T**. *Then the Fourier coefficients* $\hat{\mu}(m)$ *of* $\mu = \nu \circ J$ vanish if $m \notin S \cup (-S)$.

Indeed we have $\mu = \nu \circ J = \sum_{k \in \mathbb{Z}} c_k J^k.$ But the Fourier coefficients of *J ^k* vanish outside *S* if *k* ≥ 1 and outside −*S* if $k < -1$ which ends the proof.

Geometrical structure of Aleksandrov-Clark measures

Lemma

Let J be a smooth inner function and let K be the compact support of ν . Then the measure $\mu = \nu \circ J$ is supported by *U_K* = {*x*; *J*(*x*) \in *K* }.

Lemma

Let $J \in \mathcal{C}^{\infty}(\mathbb{T}^n, T)$. Let $|\tau| = 1$ and let us assume that $\nabla J(x) \neq 0$ *everywhere on the level set* $U_{\tau} = \{x : J(x) = \tau\}$. Then the *measure* $\mu_{\tau} = \delta_{\tau} \circ J$ makes sense, it is absolutely continuous *with respect to the surface measure dσ on U_τ and we have* $\mu_\tau = |\nabla J|^{-1}$ d $\sigma.$

Construction of crystalline measures

Definition

A "lighthouse" [6] is a **positive** Radon measure on \mathbb{R}^n which is supported by a closed set *F* of zero Lebesgue measure and whose distributional Fourier transform is supported by a proper double cone *T*.

- A proper double cone *T* is defined as *T* = *S* ∪ (−*S*) where *S* is a proper cone.
- We now consider the Aleksander-Clark measure $\mu_{\tau} = \delta_{\tau} \circ J$ of the preceding Lemma as a periodic measure on \mathbb{R}^n . If the measure of the level set U_τ is 0 then μ_τ is a lighthouse.

Turning around

Lemma

Let T ⊂ R *ⁿ be an arbitrary proper cone. Then for any* $A \in GL(n, \mathbb{R})$ *and any lighthouse* (μ, T) *the measure* $\mu \circ A$ *is a lighthouse and its Fourier transform is supported by A*[∗] (*T*).

Pointwise product between *m* weakly independent lighthouses

Definition

Let $2 < m < n$. The lighthouses $(\mu_1, T_1), \cdots, (\mu_m, T_m)$ are weakly independent if the proper double cones T_1, \cdots, T_m are independent over $\mathbb R$.

Theorem

Let 2 $\leq m \leq n$. Let $(\mu_1, T_1), \ldots, (\mu_m, T_m)$ be m weakly *independent lighthouses. Then the pointwise product* $\mu = \mu_1 \cdots \mu_m$ *is a positive measure. The support of* μ *is contained in the intersection* ∩ *m* ¹ *F^j where F^j is the closed support of* μ_j *. Moreover if each* $\widehat{\mu}_j$ *,* 1 \leq *j* \leq *m, is an atomic measure*
supported by a locally finite set then the same is true for $\widehat{\mu}$ *supported by a locally finite set then the same is true for* $\hat{\mu}$ *.*

Crystalline measures

A crystalline measure is an atomic measure μ enjoying the following three properties: (*a*) the support of μ is locally finite, (b) μ is a tempered distribution and (c) the distributional Fourier transform of μ is also an atomic measure carried by a locally finite set.

Recipe

- We start with a standard smooth inner function *J*.
- We consider the corresponding Aleksandrov-Clark measure $\mu = \delta_\tau \circ J$.
- We use the turning Lemma to obtain *n* independent proper $\mathsf{cones}\ A^*_j(\mathcal{T}).$

• We consider
$$
\mu_j = \mu \circ A_j
$$
.

Theorem

The pointwise product $\mu = \mu_1 \cdots \mu_n$ *is a crystalline measure if and only if the support of* μ *is locally finite.*

This geometric condition is easily checked since these µ*^j* are Aleksandrov-Clark measures.

Hörmander's seminal work

The pointwise product *u v* between two tempered distributions $u, v \in \mathcal{S}'(\mathbb{R}^n)$ does not exist in general. However this product exists if the two distributions *u* and *v* are independent in a sense given by two-microlocal analysis. Here is a tentative definition of the pointwise product of two tempered distributions. Let φ and ψ be two functions in the Schwartz class $\mathcal{S}(\mathbb{R}^n)$ such that $\int \varphi = 1,$ $\int \psi = 1,$ and let $\varphi_\epsilon,$ $0 < \epsilon \leq 1,$ be given by $\varphi_\epsilon(\mathsf{x}) = \epsilon^{-n} \varphi(\mathsf{x}/\epsilon).$ The family $\psi_\epsilon,$ 0 $<\epsilon\leq$ 1, is defined similarly.

Hörmander's seminal work

Definition

Let *u* and *v* be two tempered distributions. Let us assume that (*i*) the pointwise product $(u * \varphi_\epsilon)(v * \psi_\epsilon)$ tends to a limit in $\mathcal{S}'(\mathbb{R}^n)$ as ϵ tends to 0 and (*ii*) that this limit does not depend on the choices of φ and ψ . Then the pointwise product *uv* between *u* and *v* exists and is defined by

$$
u v = \lim_{\epsilon \to 0} (u * \varphi_{\epsilon})(v * \psi_{\epsilon}). \tag{8}
$$

Hörmander's seminal work

Theorem

Let S and T be two closed cones such that $S \cap (-T) = \{0\}$ *. If u* and v are two tempered distributions on \mathbb{R}^n , if \hat{u} is supported by
S, and if \hat{u} is supported by T, than the pointwise product unit. *S*, and if \hat{v} is supported by T then the pointwise product uv *makes sense. Moreover if* $u_i \rightharpoonup u$ *and* $v_i \rightharpoonup v$ *then* $u_i v_i \rightharpoonup u v$ *.*

- P.Ahern. *Inner functions in the polydisc and measures on the torus.* Michigan Math. J. 20 (1973).
- 昂 D.Clark. *One dimensional perturbations of restricted shifts.* J. Anal. Math. 25 (1972) 169–191.
- L.Hörmander. The analysis of linear partial differential operators: I Distribution Theory and Fourier Analysis 2nd edn (1990) Springer.
- A.Kolmogorov. *Foundation of the Theory of Probability.*
- P.Kurasov and P.Sarnak. *Stable polynomials and crystalline measures.* J. Math. Phys. 61, 083501 (2020)
- Y.Meyer *Crystalline measures and wave front sets.* Volume in hommage to Guido Weiss.
- Y.Meyer *Multidimensional crystalline measures.* Trans. R. Norw. Soc. Sci. Lette. (2023) 1-24.
- W.Rudin. *Function theory in the polydiscs*. Benjamin, New York, 1969.
- W.Rudin and L.E. Stout. *Boundary properties of functions of* 譶 *several complex variables.* Journal of Mathematics and Mechanics. (1965) 991-1005.