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Introduction

Some relations existing in the mathematical approaches in fluid dynamic of
the following issues.

@ Energy conservation / Anomalous energy dissipation,
@ Onsager Conjecture,
© Two critical numbers 0 < % < &

@ Boundary effect, Kato criteria , Prandlt Von Karman turbulent
boundary layer,

© Analytic Prandlt Boundary layer and Gortler vortices.
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The “ incompressible solenoidales Euler equations

In QxR; Oiu+u-Vu+Vp=0, V-u=0.
Or for weak solutions Oiu+V : (t®u)+Vp=0;
With boundary on 09 x R; u-n=0;

d
And " formally" energy conservation dt/ lu(x, t)]?dx = 0.
Q

Formally refer to the Onsager conjecture (1949) which relates the

anomalous energy dissipation with a loss in regularity up to the order % (in

Holder spaces or avatars..)
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The “ incompressible solenoidales Euler equations

In the absence of boundary:

e Solutions in L3(0, T; C%%) with a > % conserve the energy
(Constantin, E, Titi 1994. ).

—Ap=(VeV):(u®u) =pcCo, (1)

o There exist solutions belonging to L3(0, T; C%®) with a < £ that
dissipate the energy: C.Delellis and L.SzekelyhidiJr. 2009. Then Isett
2018.
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For % < o more subtle with boundary

With n" an extension of the "ingoing” normal near OS2 :
n Q@ —-Ap=(VeV): (u®u) (2)
For the boundary:

InQ, 0¢(u-nM+[V-(u®u)]-n+Vp-n=0
=0nodQ, [V-(u®u)]-A+Vp-i=0.

Formally on 9Q u-7=0= 95(u-i)?>=0
=0sp=—-[V-(wueu)] - [V-(u®u)] - i=(ueu):Vn.

The standard Holder elliptic regularity gives for kK > 1 and formally for
k=0.

(4)

ue ChYQ) = pe Q). (5)
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For % < o more subtle with boundary

From the C%? regularity of the field u follows the interior C°2“
regularity of the of the pressure (cf. Below).

With an extra hypothesis near a small neighbourhood of the boundary on
the pressure the conservation of energy follows CB, Titi 2018.

As shown by an example below this extra hypothesis on the pressure near
the boundary does not follow from the basic equations (2) (4).

The reason being that under the sole regularity u € C%%(Q) with a < %
the expression O5(u - M)? makes no sense on the boundary.

However with the introduction of a modified very weak form of the
boundary condition appearing in (4) one shows that the pressure is in
C%*(Q) up to the boundary.

With such considerations one obtains the energy conservation under the
unique C%%(Q) regularity of the field u.
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Interior double Holder regularity of the pressure. Silvestre

In Q = R? or T a pressure p defined in term of a divergence free vector

field u by the formula:
—Au=(VV)(u®u)
inherit from u the following properties:

Q=R%or T, uweCO)NLYQ) V-u=0
=
1 2
For0<a<1 04755 = |Ipllcoza < Cllulzo.a -
Fora >1,C%* = clol,

() — F()]
x— yllog(1-57)

1
Fora:E p € Liprog = {f

LipLog or Lizorkin spaces.
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Interior double Holder regularity of the pressure. Silvestre

(2010) Proof Sylvestre in RY. Also L. De Rosa, M. Latocca, and G.

Stefani. 2023.
— AG = § Green function of — A

1 1 Cd
d=2=G =—log— d>2=G = —,
(v) = 5 log W () 2
ly[26i — 2yiy;
¢(_)/) = G(y_Xl) - G(y_x2) aaUG(y) = ’;‘d+2 ! ’

p(x1) — plxa) = / p(y)Ad(y)dy
- / (uy) — m0a)) (s (y) — ui(x2))BrB(y ) dy

The above term is “quadratic” in o .
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Interior double Holder regularity of the pressure. Silvestre

Introduce: X = X152 r =[x + x|

[ @) —uba) ) —utDagema < [k

For the first term use:
Cr

|y _y‘d—i—l =

ly —=X| > 5r = [0;9;¢(y)|| <

Cr
/ ...... < C(Hu||a)2/ ly = x|y = x| —— gz dy
ly—x|>5r ly—=X|>5r ly ==

The second is bounded by the sum of two terms of the same order (for
k=1,2)

/| . (ui(y) = uixa))(uj(y) = uj(x2))[9i8; G (y — xi)|dy
y—x|<5r

1
< C(IIUIIC“)/ Y = x| ———5dy.
ly—x|<5r ly — Xk‘d

And the estimate follows.

(Ol ETTT S ETEC [ T W S S AR T R Boundary effects in the Euler equations and November 4, 2024 9/25



A "Boundary” contre exemple

Shows that the standard regularity, Onsager type C%* % <a< %
hypothesis on the fluid are not by themselves sufficient to define Jzp on
0Q.

In Ry xT, U(x,y) = (u(x,y),v(x,y)) and y— 0(y) € D(T)

u(x,y) =— lim Z 27K sin(2%7x) cos(2kmy) ,
N2 0l
v(x,y) = lim Z 27% cos(2kmx) sin(2ky),
N_wOOSkSN

1 2 — 1 f —a(k+1) ok - ol
X/u(x,y) O(y)dy = . Nll_r;nOo Z 2 sin(2%7x) sin(2'mx)

0<Kk<N,0<I<N

/ cos(2Xmy) cos(2/my)0(y)dy .
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Modulo the non resonant termes:

% / u(x,y)?0(y)dy

1 - .
gth 2 2O"‘(sm(2k7rx))2/1+(cos(2k+17ry))20(y)dy4—721
T 0<k<N
1
= Zim Y 2 20‘k(sm(2k7rx))2/H(y)dy—i—Rz
X —>000§ng

As a consequence inserting the value xx = y(% in the above sum one has

| [ (b )200)dy] = 240212 [ o3y

The normal derivative of (u- )2 hence of p is not defined on 9 and also
on any sub manfold of Q.
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A well adapted very weak boundary condition for the pressure:

Q is an open set with a smooth ( C* boundary 99 . )
d(x,00Q) <6 = d(x,00) = ||x —X||,x € R
x> x € CHQ),x— d(x,00) € CHQ).

Introduces a boundary layer localisation:

x = ¢(x) € C*(RY),

d(x,00) > = ¢(x) =0,

d(x,00) < g = o(x)=1,

—A(p+¢(x)(u-n)?) =(VRV): (u®u)— A(p(x)(u-n)?) inQ,
On(p+¢(x)(u-n)?) = (u®u):Vn

in a very weak sense: in H™2(9Q x (0, T))).
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A well adapted very weak boundary condition for the pressure:

~AP = (Ve V): (u®u) = Ae(x)(u-n)?), (7)

which is satisfied in the sense of distributions. In particular, it means that
for test functions ¢ € D(Q)

— / PAvydx = / u;u;0; 03 dx — / d(x)(u - n) Adpdx. (8)
Q Q Q

~AP = (Ve V): (u®u) = Ae(x)(u-n)?), (9)

which is satisfied in the sense of distributions. In particular, it means that
for test functions ¢ € D(Q)

— / PApdx = / u;u;0; 053 dx — / o(x)(u- n)2Apdx.  (10)
Q Q Q

InH=2(0Q x (0, T))), 9,P= (u®u) : Vn on dQ, (11)

As a consequence P belongs to C%® and since (u ® u) belongs to the
same space one has also for o > % p € C%~ C.B. D. Boutros, E. Titi,
arXiv:2304.01952. 2023.
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Adapted to the description of boundary effect, including incoming flux.

The simplest but the most rigide boundary is the no slip boundary
condition u, =0

For small (realistic v — 0+ ) and convergence to solution of the Euler
equation the tangential component of the velocity does remain equal to 0
A boundary layer appear and Prandlt 1905 (the main model of further
boundary layer analysis over the past century).

This boundary layer is related to generation of “turbulence / anomalous
energy dissipation.”

However Prandlt-Von Karman 1930 observed that the turbulence is
generated in a domain of size v << /v

Below comparison at the level of initial valuee problems with smooth
solutions of the Euler equation, “lipschitz” for the absence of anomalous
energy dissipation and analytic for sharper analysis.
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The B. Titi version for 1984 Kato Theorem

E. Titi and C.B. An avatar Kato Thoerem , based on simple Gronwall
estimate .

Theorem

( In dimension 2 and 3) Let u be weak solution to the Euler equations in
[0, T] x Q satisfying ||V ul| ([0, T]x@) < 00. Consider (v >0, u,) Leray
weak solutions to the Navier-Stokes :

1 t 1
5””1/(1')”%2(9) +V/O IV (8) 172y ot < 5“”1/(0)“%2(9) (12)

uniformly in v — 0. Assume that their vorticity w, = V= - u, satisfies
S
im sup / / v (t.0)u(t,0) - 7(0)dodt) =0, (13)
v—0 JO JOQ

then any T,, which is a weak—x* limit in L>°([0, T]; L?(Q2)) of a
subsequence u,; as vj — 0, satisfies the stability estimate (and

convergence for u,(0) — u(0) = 0).
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The B. Titi version for 1984 Kato Theorem

For the Kato Theorem it is enough to have

v—0

lim u/ /an 8””(0 t));u(o,t) | dodt=0

Laminar regime
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The B. Titi version for 1984 Kato Theorem

Equivalents of Kato theorem:
Vw(x,t) € L°((0,T) x 02) with w-n=0,

_ T ouy, _
i V/o /m( DL (0, ))rw(o, t)dodt =0 (16)

v—0

_ T ouy, _

u'l“o”/o /m(( L (0, ))rtr (o, 1)) dodt = 0 (17)
u,(t) = u(t) in L2(Q) uniformly int € [0, T], (18)
u,(t) — u(t) weakly in L?(Q) for each t € [0, T], (19)

T
. 2 .
Vlinol//o /Q|Vuy(x, t)|“dxdt =0, (20)

.
lim 1// / IV A u,(x,t)]Pdxdt =0.  (21)
v—0 QN{0<d(x,0Q)<%}

lim / / |lu,(x, t)|?dxdt = 0. (22)
v=0v QN{¥<d(x,00)<%}
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Short time analytic stability

Next our purpose is the most possibly direct proof of (13) for short time
assuming that boundary of the domain and initial value of the solution are
analytic and confirming the role of curvature in the loss of stability.

Theorem

Let ug(x) be an initial data that is analytic up to the boundary 0Q2 and
vanishes on the boundary. Then, there is a positive time T, independent
of v, so that the unique solutions u,(t) to the Navier-Stokes problem
satisfies the estimate

lim Vlwy || oo, Tx00)) < 0. (23)
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Short time analytic stability

Proof based on the extension to any domain with analytic curved
boundary the following recent tools .

@ C. R. Anderson Vorticity boundary conditions and boundary vorticity
generation for two-dimensional viscous incompressible flows. J.
Comput. Phys. 1989.

@ Y. Maekawa, On the inviscid limit problem of the vorticity equations
for viscous incompressible flows in the half-plane. Comm. Pure Appl.
Math. (2014).

© T.T. Nguyen and T.T. Nguyen. The inviscid limit of Navier-Stokes
equations for analytic data on the half-space. Arch. Ration.Mech.
Anal., 2018.

© The release of the analyticity hypothesis away from the boundary I.
Kukavica, V Vicol and F. Wang, Arch. Ration. Mech. Anal. (2020).

@ A well adapted localisation (geodesic) for the C% regularity of the

pressure near the boundary (B. and Titi 2022, extended to 3d with D.
Boutros)

(Ol ETTT 7L [ T I S S AR T By Boundary effects in the Euler equations and November 4, 2024 19/25



The Anderson Maekawa boundary condition

On 9Q with 9, = 7 - V+ one has , with (—A)~! inverse of the Dirichlet
Laplacian:

=7 0 =7-VIA 0w = 0,[A7 (vAw — u - Vw)] (24)
With Dirichlet Neumann operator and 7 interior normal

w'=w ondQ,—Aw*=0,in Q DN(w)=—0,w", on 09,
On[ATIAW] = Op[ATA(w — w*)] = (8n + DN)w .

(anwy + DNCL)V) = 18’7A71(u : VWV)-/
174

Otw, + u, - Vw, — vAw, = 0.
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The Anderson Maekawa boundary condition

Remark
The standard energy estimates :

2
dt2/\wyx t)| dx+u/|V,,wa t)|“dx

(27)
= / vDNw,w,do + 9507 (u, - Vw,)do
oQ
indicates that the problem is ill posed even for v > 0 in any Sobolev space.
However it is well posed in space of analytic functions. And w, is analytic
in (t>0,X+iY,X € Qx Y € R?) while the solution of the Euler
equation with analytic initial data is also analytic for

t>0,X+iY,XeQx|Y|< Ce

This is why such formulation may be well adapted (Anderson) for
numerical computations (smooth data, small Reynolds number).
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For proof decompose w,, in w? = ¢Pw, defined in (6, z) € R/(ZL) x R})
and w;, = ¢'w, of compact support in R?

Sz

Boundary

e ® aca. oz Rz

. . Interior
Interior Solution Boundary Layer Solution
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The Anderson Maekawa boundary condition

Changing t into A2t one has for rescaled variables (6, z) € R/(ZL) x R} :

Orwd — vAWE = —vN?(m(z,0)83wP) — A72ub - VWb + Ki(N)

V(Onw? + |9p|w?) = A0, A7 (1P - Vwd)] — vB(w,) + Ka(N). (28)

The role of X is to "flatten " the curvature near the boundary where an
explicit half space form of the Stokes kernel is used. In the change of
variables 6 — A\ the curvature is changed into A3y(\@) this makes appear
the coefficient A2 in front of A2m(z, 0)02w® which then can be dominated
by the laplacian. This goes very well with the observation of vortices
generated in the fluid by curved boundary " Gortler Vortices".
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The Anderson Maekawa boundary con

Where the ‘'turbolenza' of the water is
generated.

Where the 'turbolenza’ Of the water persists
2. Where the ‘turbolenza’' of the water

settles.
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The Anderson Maekawa boundary condition

Pierre Gilles Many thanks for friendship contributions and patience.
Best wishes for continuation.
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