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Boris Haspot, Université Paris Dauphine (joint work with Animesh Jana
(University of Pavia (Italy)))

1 Presentation of the results

2 Idea of the Proof

Boris Haspot



Presentation of the results Idea of the Proof

This talk is concerned with the vanishing viscosity limit for hyperbolic system of
conservation laws. We consider the following parabolic approximation of the
hyperbolic system

ut +A(u)ux= ε(B(u)ux)x for t > 0, x ∈ R, (1)

u(0, x)= ū(x) for x ∈ R, (2)

where u : [0,+∞)× R → Rn and A,B are n× n matrices satisfying the following
conditions for some U ⊂ Rn .

1 Strict Hyperbolicity: The matrix A(u) is C3 function and has n distinct
eigenvalues λ1(u) < · · · < λn(u) for u ∈ U .

2 The matrix B(u) is a C2 function and positive symmetric definite with
B(u) ≥ c0In for u ∈ U and for some c0 > 0 .

3

A(u)B(u) = B(u)A(u) for all u ∈ U . (3)

In particular B(u) has n eigenvalues (µi(u))1≤i≤n .

Remark

In the sequel we consider l1, · · · , ln , r1, · · · , rn as left and right eigenvectors of
A(u) such that

∥ri(u)∥ = 1 and li(u) · rj(u) =
{

1 if i = j,
0 if i ̸= j.

(4)
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Remark

If we assume that A(u) = Df(u) with f a regular function from Rn in Rn , it is
well-known [Glimm, Bressan et al] that the limit vanishing viscosity system which
is conservative: {

ut + ∂xf(u) = 0,

u(0, ·) = ū,

has a unique global weak solution provided that u0 is small in TV (R) . The class
of uniqueness select some shock which satisfy the Lax condition.
Generally it is assumed that the fields are linearly degenerate (∇λi(u) · ri(u) = 0)
or genuinely non linear (∇λi(u) · ri(u) ̸= 0).
We can note that we are not able to prove the existence of global weak solution
when the system is not conservative.

Some questions on the vanishing viscosity limit?

Q1 Can we obtain the existence of global strong solution for the parabolic system
which are uniformly bounded in TV (R)?

Q2 Can we prove that the sequence (uε)ε>0 converges strongly to u ? When the
system is conservative we can expect that u is a global weak solution of the
limit vanishing viscosity system.

Q3 Is it true that the limit u depends on the viscosity coefficients B(u)?
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Some answers to the previous equations

Bianchini-Bressan [01]: When B(u) = Id and A(u) = Df(u) then the
sequence of solution (uε)ε>0 is uniformly bounded in L∞(R+, TV (R)) . The
sequence converges strongly in L1

loc,t,x to u even when the system is not
conservative.

Note that uε(t, x) = u(t/ε, x/ε) where u solves the following problem with fix
viscosity but scaled initial data,

ut +A(u)ux = (B(u)x)x and u(0, x) = ū(εx). (5)

Observe that:

TV (ū(ε·))= TV (ū(·)).

Remark

We are reduced to get TV norm on u . To do this, we wish to estimate the L1

norm of ∂xu , it is a priori natural to decompose the vector ux in the basis
(ri(u))1≤i≤n :

ux =
n∑

i=1

viri(u).

Differentiating (5), we obtain a system of n evolution equations:

vi,t + (λivi)x − (µivi)xx = ϕi.

Boris Haspot



Presentation of the results Idea of the Proof

By maximum principle we deduce that for t ≥ t̂ > 0 :

∥vi(t, ·)∥L1 ≤ ∥vi(t̂, ·)∥L1 +

∫ t

t̂

∫
R
|ϕi(s, x)dxds.

Unfortunately in general if we consider a travelling wave solution
u(t, x) = Ui(x− λt) with limU(x)x→−∞ = U− and limU(x)x→+∞ = U+

representing a viscous i shock, we observe that:∫
R
|ϕi(t, x)dx| ̸= 0.

Remark

This is the reason why it is important to choose a basis (r̃i(u))1≤i≤n in a clever
way such that ϕi = 0 when we consider a viscous travelling wave. In particular
we wish to have:

∂xUi(x− λt) = vir̃i(u, vi, λ).

It is what are doing Bianchini, Bressan by using the center manifold theorem.
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Remark

If each characteristic field of A belongs to the Temple class, that is, the Lax
curves are straight lines and satisfying

Dri(u) · ri(u) = 0 for all i = 1, 2, · · · , n, (6)

then it can be observed that u(t, x) = U(x− σt) with ux = a(s)ri(U(s)) forms a
travelling wave when U, a, σi satisfying the following system of ODE,

U ′(s) = a(s)ri(U(s)),

a′(s) =
1

µi(U(s))
[(λi(U(s))− σi)a(s)− ri(U(s)) • µi] ,

σ′
i(s) = 0.

We can show in particular in this case that setting vi(t, x) = a(x− σt) , we obtain:

∂tvi + (λi(U)vi)x − (µi(U)vi)xx = 0.
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We set uix := li(u) · ux and we have

ux =
∑
i

uixri(u). (7)

The directional derivative of a function g : Rn → Rn is denoted by ζ • g for some
ζ ∈ Rn . More precisely,

ζ • g(u) = lim
z→0

g(u+ zζ)− g(u)

z
.

ut+
∑
i

λiu
i
xri =

∑
i

(uixB(u)ri)x =
∑
i

(µiu
i
xri)x =

∑
i

(µiu
i
x)xri+

∑
i,j

µiu
i
xu

j
xrj•ri,

(8)
Hence, after tedious computation we can write an equation on ∂xu which gives:∑
i

(uixt + (λiu
i
x)x − (µiu

i
x)xx)ri =

∑
i,j

piju
i
xu

j
x +

∑
i,j

qiju
i
xxu

j
x +

∑
i,j,k

sijku
i
xu

j
xu

k
x,

where pij , qij and sijk are defined as follows,

pij = −λi(rj • ri − ri • rj),
qij = 2µirj • ri + (µi − µj)rj • ri,
sijk = 2(rj • µi)rk • ri + µi(rk • (rj • ri)− (rk • ri) • rj)− (rk • µj)rj • ri.
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Furthermore, we set pijk := li · pjk, qijk := li · qjk and sijkl := li · sjkl . Writing

vi = uix , we get

vi,t + (λivi)x − (µivi)xx =
∑
j,k

pijkvjvk +
∑
j,k

qijkvj,xvk +
∑
j,k,l

sijklvjvkvl

=: ϕi(u, v1, · · · , vn).

We note that pikk = qikk = sikkk = 0 for all i, k due to the assumption rk • rk = 0
for all k .

Triangular system

Let us consider now the following triangular system:{
u1,t + (f(u1))x = 0,

u2,t + (g(u1, u2))x = 0.

We consider the corresponding viscosity approximation{
u1,t + (f(u1))x= α1u1,xx,

u2,t + (g(u1, u2))x= [(β(u1, u2)u1,x)x + α2u2,xx].

We can write (7)–(7) in the following form

ut +A(u)ux = (B(u)ux)x, (9)
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where A,B are defined as follows

A(u) =

(
f ′(u1) 0

∂g
∂u1

∂g
∂u2

)
and B(u) =

(
α1 0
β(u) α2

)
. (10)

We assume that β(u) satisfies the following condition

β(u) = (α1 − α2)

∂g
∂u1

f ′(u1)− ∂g
∂u2

. (11)

which corresponds to A(u)B(u) = B(u)A(u) . Furthermore we have:

r1(u) =

(
1

h(u)

)
and r2(u) =

(
0
1

)
. (12)

Viscous travelling wave

We would like to decompose ux in terms to travelling waves of (9). Let
u(t, x) = U(x− σ1t) be a travelling wave corresponding to 1-family. Then we have
the following ordinary differential system

u̇ = v,
v̇ = B−1(u)(A(u)− σ)v −B−1(u)(v ·DB(u))v,
σ̇ = 0.

 (13)

We note that P ∗
1 := (u∗, 0, λ1(u∗)) are equilibrium points. We linearize near the

point P ∗
1 and get

u̇ = v,
v̇ = B−1(u∗)(A(u∗)− λi(u

∗))v,
σ̇ = 0.

 (14)Boris Haspot
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We define Vi, 1 ≤ i ≤ 2 as follows

v =
∑
j

Vjr
∗
j , Vj := l∗j · v. (15)

The center subspace will look like

N1 := {(u, v, σ) ∈ Rn × Rn × R; Vj = 0, j ̸= i} . (16)

Note that dim(N1) = 4, by Center Manifold Theorem , there exists a smooth
manifold M1 ⊂ R5 which is tangent to N1 at P ∗

i .
Furthermore, M1 has dimension 4 and is locally invariant under the flow of (13).
We can write

V2 = φ2(u, V1, σ). (17)

We can assume that φ2 is defined on the domain

D1 := {|u− u∗| < ε, |V1| < ε, |σ − λ1(u
∗)| < ε} . (18)

Note that equilibrium points (u, 0, σ) with |u− u∗| < ε, |σ − λ1(u∗)| < ε lie in
M1 we have

φ2(u, 0, σ) = 0 for all . (19)

Hence, we may write
φ2(u, V1, σ) = ψ2(u, V1, σ)V1, (20)

for some ψ2 .
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It implies that:
v = V1(r

∗
1 + ψ2(u, V1, σ)r

∗
2)

We deduce that:

v = V1⟨l1(u), (r∗1 + ψ2(u, V1, σ)r
∗
2)⟩r1(u) + V1⟨l2(u), (r∗1 + ψ2(u, V1, σ)r

∗
2)r2(u).

Now, we would like to make a change of coordinates Vk 7→ Ṽk as follows

Ṽk = ⟨v, lk(u)⟩ (21)

Therefore, for any point (u, v, σ) ∈ M1 we can write

v = Ṽ1
(
r1(u) + ψ̃2(u, Ṽ1, σ)r2(u)

)
=: Ṽ1r̃1(u, Ṽ1, σ). (22)

We note that the gradient of 1-family travelling waves can be written under the
following form

ux = v1r̃1 where r̃1 =

(
1

s(u, v1, σ1)

)
(23)

with

s(u, v1, σ1) = ψ̃2(u, v1, σ1) +

∂g
∂u1

f ′(u1)− ∂g
∂u2

.

Furthermore we can check that:

r̃1,σ = O(1)v1, r̃1,σσ = O(1)v1, r̃1 • r̃1,σ = O(1)v1. (24)
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We want to have a decomposition of ux as

ux = v1r̃1(u, v1, σ1) + v2r2(u). (25)

We observe that Br̃1 = α1r̃1 + s1r2 with s1(u, v1, σ1) a function depending on
(u, v1, σ1) . Set w1=α1v1,x − λ1v1 the effective flux, after tedious computation we
obtain that:

(B(u)ux)x −A(u)ux = w1[r̃1 + v1r̃1,v ] + (α2v2,x − λ2v2)r2

+
1

α1
(w1 + σ1v1)(s1 + v1s1,v)r2 + v1σ1,xs1,σr2

+ v21σ1r̃1,v + α1σ1,xv1r̃1,σ + v1v2r2 • s1r2 + α1v1v2r2 • r̃1.

We need now to specify the choice of σ1 . Assume that we consider a travelling
wave such that ux = v1r̃1 then from the previous equation we should have:

ut = w1r̃1 +
1

α1
(w1 + σ1v1)(s1 + v1s1,v)r2

+ (w1 + v1σ1)v1r̃1,v .

Since we have ut = −σ1ux , we must choose σ1 such that σ1 = −w1
v1

.
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Since σ1 must live in a neighborhood of λ1(u∗) , we set

σ1 = λ1(u
∗) + θ(−

w1

v1
− λ1(u

∗)),

with

θ(s) =

{
s if |s| ≤ δ1

2
,

0 if |s| ≥ δ1,
|θ′| ≤ 1 and |θ

′′
| ≤ 4/δ1. (26)

Let us assume now that we consider a solution ux of our system such that:

ux = v1r̃1(u, v1, σ1) + v2r2(u). (27)

If we consider the first coordinate of ux and due to the form of r̃1 , we observe
that v1 = u1,x . After computations, we can show now that (v1, v2){

v1,t + (λ1v1)x − α1v1,xx = 0,

v2,t + (λ2v2)x − α2v2,xx = ϕ2,
(28)

with:

ϕ2 =O(1)[v1,x(w1 + σ1v1)| wrong speed

+O(1)|w1,xv1 − v1,xw1| change in strength

+O(1)|v1[v1(
w1

v1
)2x]|χ{x,|w1

v1
|≤3δ1} change in speed

+O(1)[|v1v2|+ |v1,xv2|] transversal interactions

+O(1)[|
1

α1
((w1 + σ1v1)(s1 + v1s1,v))x + (v1σ1,xs1,σ)x |]
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Theorem

Consider the Cauchy problem hyperbolic system with viscosity,

ut +A(u)ux = ε(B(u)ux)x, u(0, x) = ū(x). (29)

There exists L1, L2, L3 > 0 and δ0 > 0 such that the following holds. If ū
satisfies

TV (ū) ≤ δ0 and lim
xR−

ū(x) ∈ K, (30)

for some compact set K ⊂ U then there exists unique solution uε to the Cauchy
problem (29) and it satisfies the following properties

TV (uε(t)) ≤ L1TV (ū), (31)

∥uε(t)− vε(t)∥L1 ≤ L2∥ū− v̄∥L1 , (32)

∥uε(t)− uε(s)∥L1 ≤ L3

(
|t− s|+

√
ε|
√
t−

√
s|
)
, (33)

where vε is the unique solution corresponding to v̄ satisfying (30).
Furthermore, when A = Df for some f ∈ C1 , as ε→ 0 (up to a subsequence),
uε → u in L1

loc with u a solution to hyperbolic system (5).
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Theorem

Then for every compact set K ⊂ U there exist L1, L2, δ0 , a closed domain
D ⊂ L1

loc(R) and a semigroup S : [0,∞)×D → D satisfying the following
properties.

1 Every function ū verifying (30) belongs to D .

2 For any ū, v̄ ∈ D with ū− v̄ ∈ L1 ,

∥St1 (ū)− St2 (v̄)∥L1 ≤ L∥ū− v̄∥L1 + L′|t1 − t2| for any t1, t2 ≥ 0, (34)

for some constants L,L′ which are depending only on D .

3 For any piece-wise constant initial data ū ∈ D there exists τ > 0 such that
the following holds. For t ∈ [0, τ ] , St coincides with the solution constructed
by gluing the Riemann problem solutions arising at each jump point.

4 For each ū ∈ D , t 7→ St(ū) is the unique limit of the sequence uεk (t, ·) in
L1
loc for any εk → 0 where uεk (t, ·) solves (1) with initial data ū .

Remark

Let SI
t be the semigroup constructed by Bianchini-Bressan for (5). Due to the

characterization S3, we conclude that the semigroup SB
t constructed as above

coincides with SI
t .
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Parabolic estimates

Proposition

Let u be a solution to the equation (5) satisfying

∥ux(t, ·)∥L1 ≤ δ0 for all t ∈ [0, t̂] where t̂ :=

(
1

Cδ0

)2

, (35)

for some δ0 < 1 and C > 0 . Then we have

∥uxx(t, ·)∥L1 ≤
2κκ21κ

2
P δ0√
t

∥uxxx(t, ·)∥L1 ≤
5κκ21κ

2
P δ0√
t

∥uxxx(t, ·)∥L∞ ≤
16κκ21κ

2
P δ0√
t

(36)
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First we have:

(ux)t +A(u)uxx = B(u)uxxx + (ux •B(u)ux)x − ux •A(u)ux. (37)

We would like to diagonalize the system, making a change of variable v = P (u)ux
we get:

vt +A1(u)vx = B1(u)vxx −B1((P
−1(u)v) • PP−1v)x −B1[(P

−1v) • P (P−1v)x]

+ ut • P (u)P−1v +A1(u)(P
−1(u)v • P (u)P−1v)

+ P (P−1v •B(u)P−1v)x − P (P−1v) •A(u)P−1v.

with A1 = PAP−1 and B1 = diag(µ1(u), · · · , µn(u)) = PBP−1 . Next, we do a
change of variable v 7→ ṽ such that v(t, x) = (ṽi(t,Xi(t, x))) where
(Xi)x = 1√

µi(u)
. Then we have

ṽt +A∗
2 ṽx = ṽxx + T ([A∗

2 −A∗
1B

−1/2
1 (u)]ṽx +B1(P

−1v) •B−1/2
1 ṽx)

−T (ṽi,xXi,t) + T (R), (38)

where A∗
2 = A∗

1B
−1/2
1 (u∗) with:

T (f)i(x) = fi(Xi(x)) where Xi(x) =

x∫
0

1√
µi(u(z))

dz. (39)
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We consider G as the fundamental solution of the following parabolic equation

wt +A∗
2wx = wxx, (40)

where A∗
2 = A∗

1B
−1/2
1 (u∗) . The function G satisfies the following estimates

∥G(t, ·)∥L1 ≤ κ, ∥Gx(t, ·)∥L1 ≤
κ
√
t
, ∥G(t, ·)∥L1 ≤

κ

t
, (41)

We argue by contradiction. To this end, first we assume that the conclusion does
not hold. Due to the assumption of smoothness of initial data, solution is smooth
up to a small time and due to the continuity we can assume that there exists a
time t∗ such that (47) holds for t ∈ [0, t∗] and equality attains at t = t∗ . We can
write for t ∈ [0, t∗] :

ṽx = Gx(t/2) ⋆ ṽ(t/2) +

t∫
t/2

Gx(t− s) ⋆
{
T ([A∗

2 −A∗
1B

−1/2
1 (u)]ṽx

+B1(P
−1v) •B−1/2

1 ṽx)− T (ṽi,xXi,t) + T (R)
}
ds.
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Furthermore, we observe that

∥ṽ∥L1 ≤ κP κ1∥ux∥L1 , (42)

∥ṽx∥L1 ≤ κP κ1∥uxx∥L1 . (43)

We get:

∥ṽx(t)∥L1 ≤ ∥Gx(t/2)∥L1∥ṽ(t/2)∥L1 +

t∫
t/2

∥Gx(t− s)∥L1∥T ([A∗
2 −A∗

1B
−1/2
1 (u)]ṽx)∥L1 ds

+

t∫
t/2

∥Gx(t− s)∥L1∥T (B1(P
−1v) •B−1/2

1 ṽx)− T (ṽi,xXi,t) + T (R)∥L1 ds

≤
2κδ0√
t

+

t∫
t/2

κκ1√
t− s

∥[A∗
2 −A∗

1B
−1/2
1 (u)]ṽx∥L1 ds

+

t∫
t/2

κκ1√
t− s

∥B1(P
−1v) •B−1/2

1 ṽx − (ṽi,xXi,t) +R∥L1 ds.
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We note that

∥[A∗
2 −A∗

1B
−1/2
1 (u)]ṽx∥L1 ≤ κAκB∥u− u∗∥L∞∥ṽx∥L1

≤ κAκBκP κ1∥u− u∗∥L∞∥uxx∥L1 ,

Therefore, we get

∥ṽx(t)∥L1 ≤
√
2κκ1κP δ0√

t
+ 600κ61κ

3κAκ
7
Bκ

12
P

t∫
t/2

1
√
t− s

[
δ20
s

+
δ20√
s

]
ds

<
2κκ1κP δ0√

t
,

which implies

∥uxx(t∗, ·)∥L1 <
2κκ21κ

2
P δ0√
t∗

. (44)

This contradicts the assumption that equality holds in (47) at t = t∗ .
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Proposition

Let ū satisfying

TV (ū) ≤
δ0

4κ
.

Then u are well-defined on [0, t̂] where t̂ is defined as in (46). Moreover, we have

∥ux(t)∥L1 ≤
δ0

2
for t ∈ [0, t̂]. (45)

Suppose that there exists a time τ < t̂ such that ∥ux(τ)∥L1 = δ0
2

and

∥ux(t)∥L1 <
δ0
2

for all t ∈ [0, τ ] . We can write

ut +A(u∗)ux = B(u∗)uxx + (B(u)−B(u∗))uxx + (A(u∗)−A(u))ux + ux •Bux.

Therefore,

∥ux(τ)∥L1 ≤ κ∥u0,x∥L1 +

τ∫
0

2κκB√
τ − s

∥ux∥L1∥uxx∥L1 ds+

τ∫
0

κκA√
τ − s

∥ux∥2L1 .

By Proposition 2.1 we get

∥uxx(t, ·)∥L1 ≤
2κκ21κ

2
P δ0√
t

for t ∈ [0, τ ].
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Hence, by the choice of δ0

∥ux(τ)∥L1 ≤
δ0

4
+ 2

τ∫
0

κ
√
τ − s

2κκ21κ
2
P δ0√
s

κBδ0

2
ds+

τ∫
0

κ
√
τ − s

κAδ
2
0

4
ds

<
δ0

2
.

Proposition

Let T > t̂ and u be a solution to the equation (5) satisfying

∥ux(t, ·)∥L1 ≤ δ0 for all t ∈ [0, T ] (46)

for some δ0 < 1 and C > 0 . Then we have for t ∈ [t̂, T ]

∥uxx(t, ·)∥L1 = O(1)δ20

∥uxxx(t, ·)∥L1 = O(1)δ30

∥uxxx(t, ·)∥L∞ = O(1)δ40 .

(47)

Boris Haspot



Presentation of the results Idea of the Proof

Interaction estimates

Lemma

Let z, z# be solutions of the two independent scalar equations,

zt + (λ(t, x)z)x − (µz)xx = φ(t, x), (48)

z#t + (λ#(t, x)z#)x − (µ#z#)xx = φ#(t, x), (49)

which is valid for t ∈ [0, T ] . We assume that inf
t,x

λ#(t, x)− sup
t,x

λ(t, x) ≥ c > 0

and ∥(µ, µ#)∥L∞ <∞ , µ, µ# ≥ c0 > 0 . Then we have

T∫
0

∫
R

|z(t, x)||z#(t, x)| dxdt ≤
1

c
E1E2, (50)

E1 :=

∫
R

|z(0, x)| dx+

T∫
0

∫
R

|φ(t, x)| dxdt, (51)

E2 :=

∫
R

|z#(0, x)| dx+

T∫
0

∫
R

|φ#(t, x)| dxdt. (52)

Boris Haspot



Presentation of the results Idea of the Proof

Set c1 := ∥µ, µ#∥L∞ . Let z, z# be the solution to (48), (49) with φ = φ# = 0.
Consider

Q(z, z#) :=

∫ ∫
K(x− y)|z(x)| |z#(y)| dxdy, (53)

where K is defined as follows

K(s) :=

{
1/c if s ≥ 0,

1/ce
cs
2c1 if s < 0.

(54)

Now, we can calculate using the fact that cK′ − 2c1K′′ is precisely the Dirac
masses

d

dt
Q(z(t), z#(t)) =

∫ ∫
K(x− y)[sgn(z(x))zt(x)|z#(y)|+ sgn(z#(y))z#t (y)|z(x)|] dxdy

=

∫ ∫
K(x− y)

[
sgn(z(x))((µ(x)z(x))xx − (λz(x))x)|z#(y)|

+ sgn(z#(y))((µ#(y)z#(y))yy − (λ#z#(y))y)|z(x)|
]
dxdy

≤ −
∫ ∫

(cK′(x− y)− 2c1K
′′(x− y))|z(x)||z#(y)| dxdy

≤ −
∫

|z(x)||z#(x)| dx.∫ T

0

∫
R
|z(t, x)| |z#(t, x)| dxdt ≤ Q(z(0), z#(0)) ≤

1

c
∥z(0)∥L1∥z#(0)∥L1 . (55)
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Now, we consider z, z# as solutions of (48), (49) respectively when φ and φ#

may not be identically 0 . Using the representation of the solution in terms of
Γ,Γ# be the fundamental solutions corresponding to the homogeneous system of
(48)–(49) we can conclude in a similar way. Indeed we can write

z(t, x) =

∫
R

Γ(t, x, 0, y)z(0, y) dy +

t∫
0

∫
R

Γ(t, x, s, y)φ(s, y) dyds. (56)

Lemma

Let z, z# be solutions of (48), (49) respectively and we assume that

T∫
0

∫
R

|φ(t, x)|dxdt ≤ δ0,

T∫
0

∫
R

|φ#(t, x)|dxdt ≤ δ0, (57)

∥z(t)∥L1 , ∥z#(t)∥L1 ≤ δ0, ∥zx(t)∥L1 , ∥z#(t)∥L∞ ≤ C∗δ
2
0 , (58)

∥λx(t)∥L∞ , ∥λx(t)∥L1 ≤ C∗δ, lim
x→−∞

λ(t, x) = 0, (59)

for all t ∈ [0, T ] . Then we have

T∫
0

∫
R

|zx(t, x)||z#(t, x)| dxdt = O(1)δ20 . (60)
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Lemma

Let z, z# be solutions of (48), (49) respectively and we assume that

T∫
0

∫
R

|φ(t, x)|dxdt ≤ δ0,

T∫
0

∫
R

|φ#(t, x)|dxdt ≤ δ0, (61)

∥z(t)∥L1 , ∥z#(t)∥L1 ≤ δ0, ∥zx(t)∥L1 , ∥z#(t)∥L∞ ≤ C∗δ
2
0 , (62)

∥λx(t)∥L∞ , ∥λx(t)∥L1 ≤ C∗δ, lim
x→−∞

λ(t, x) = 0, (63)

for all t ∈ [0, T ] . Then we have

T∫
0

∫
R

|zx(t, x)||z#(t, x)| dxdt = O(1)δ20 . (64)
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Let v, w be two scalar functions satisfying:{
vt + (λ(t, x)v)x − (µv)xx = φ(t, x),

wt + (λ(t, x)w)x − (µw)xx = φ#(t, x),

Considering the functionnals as:

A(t) =
1

2

∫ ∫
x<y

|v(t, x)w(t, y)− v(t, y)w(t, x)|dxdy,

L(t) =
∫ √

v2(t, x) + w2(t, x)dx

we have then the following Lemmas.

Lemma

The previous functionals satisfies:

d

dt
A(t) +

∫
|vx(t, x)w(t, x)− wx(t, x)v(t, x)|dx

∥v(t)∥L1∥φ#(t)∥L1 + ∥w(t)∥L1∥φ(t)∥L1

d

dt
L(t) ≤ −C(δ1)

∫
|w
v
|≤3δ1

[v(t)|[
w(t)

v(t)
)x|2dx+ ∥φ#(t)∥L1 + ∥φ(t)∥L1 .

(65)
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TV Bounds

Let us consider an initial data satisfying TV (ū) ≤ δ0
8
√
n

and

lim
x→−∞

u(x) = u∗ ∈ K . Then by applying Proposition 2.2, we obtain

∥ux(t̂)∥L1(R) ≤
δ0

4
√
n
, (66)

where t̂ is defined as in (46). To get the total variation bound in (t̂,∞) we argue
by contradiction as in Bianchini-Bressan. Let T be defined as follows

T := sup

τ ;
∑
i

τ∫
t̂

∫
R

|ϕi(t, x)| dxdt ≤
δ0

2

 . (67)

It T < +∞ , we get a contradiction as follows. From (67), we have

∥ux(t)∥L1 ≤ 2
√
n∥ux(t̂)∥L1 +

δ0

2
≤ δ0 for all t ∈ [t̂, T ]. (68)

By applying 6, we get

τ∫
t̂

∫
R

|
∑
j,k

qijkvj,xvk| dxdt = O(1)δ20 <
δ0

2
(69)

for sufficiently small δ0 > 0 .
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Indeed we observe that ∥vj,x(t)∥L1 , ∥v#i (t)∥L∞ ≤ C∗δ20 are satisfied using the
proposition 2.3.

How to deal with the new terms in the case of the triangular system?

We recall that in ϕ2 we have new terms of the form:

(v1σ1,xs1,σ)x.

Since s1,σ = O(1)v1 and σ1 = λ1(u∗) + θ(−w1
v1

− λ1(u∗)) , we have to deal with a

term of the form:
w1,xxv1 − v1,xxw1.

First of all we can observe that:

w1,t + (λ1(u)w1)x − α1w1,xx = 0. (70)

Furthermore we have λ1(u) = f ′(u1) , we introduce now a new variable

z1 = α1w1,x − λ1(u)w1.

We can check that this new unknown satisfies:

z1,t= α1z1,xx − (λ1z1)x + λ′1(w1,xv1 − w1v1,x).
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We observe now that:

z1,xv1 − v1,xz1 = w1,xxv1 − w1v1,xx + 2λ1(w1v1,x − w1,xv1). (71)

Using now (65), we deduce that:∫ τ

t̂

∫
R
|w1,xxv1 − w1v1,xx| dxdt

≤
∫ τ

t̂

∫
R
|z1,xv1 − v1,xz1| dxdt+ 2∥λ1∥L∞

∫ τ

t̂

∫
R
|w1,xv1 − v1,xw1| dxdt

≤ ∥z1(t̂)∥L1∥v1(t̂)∥L1 + ∥v1∥L∞((t̂,τ);L∞(R)∥λ
′
1(w1,xv1 − w1v1,x)∥L1([t̂,τ ]×R)

+ 2∥λ1∥L∞∥w1,xv1 − v1,xw1∥L1([t̂,τ ]×R).

Using again (65), we conclude since:

∥w1,xv1 − v1,xw1∥L1([t̂,τ ]×R) = 0(1)δ20 .

Hence, T is not the supremum defined as in (67). Hence,
τ∫̂
t

∫
R
|ϕi(t, x)| dxdt ≤ δ0

2

for all t > t̂ . Subsequently, we obtain for all t ≥ 0 :

∥ux(t)∥L1 ≤ δ0.

Stability Estimates

Let ūθ be the initial defined as follows

ūθ := θū+ (1− θ)v̄ for some ū, v̄ ∈ D. (72)

Let uθ be the solution associated to initial data ūθ . Then taking derivative w.r.t
θ we obtain

0 =
∂

∂θ
[uθt +A(uθ)uθx − (B(uθ)uθx)x]

=
∂uθt
∂θ

+

(
∂uθ

∂θ

)
•A(uθ)uθx +A(uθ)

∂uθx
∂θ

+

((
∂uθ

∂θ

)
•B(uθ)uθx +B(uθ)

∂uθx
∂θ

)
x

.

Set h = ∂uθ

∂θ
and we want to decompose h as h =

∑
i
hiri
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We can now write after tedious computations∑
i

(hi,t + (λihi)x − (µihi)xx)ri

=
∑
i,j

p̂ijhivj +
∑
i,j,k

q̂ijkhivjvk +
∑
i,j

ŝijhi,xvj +
∑
i,j

ŵijhivj,x,

where p̂ij , q̂ijk, ŝij , ŵij are defined as follows

p̂ij = (λj − λi)rj • ri + rj •Ari − ri •Arj ,
q̂ijk = −(rk • µj)rj • ri − µj(rk • rj) • ri + 2(rk • µi)rj • ri + µi(rk • (rj • ri))

+ (rk • ri) •Brj − (rk • rj) •Bri + ri •B(rk • rj)− rj •B(rk • ri)

+ (rj ⊗ ri) : D
2Brk − (rj ⊗ rk) : D

2Bri,

ŝij = 2µi(rj • ri) + ri •Brj − rj •Bri,
ŵij = (µi − µj)rj • ri − rj •Bri + ri •Brj .

By using interaction estimates (Lemma 3 and 6) we can obtain

∥h(t)∥L1 ≤
∥h(t̂)∥L1

2
for all t > t̂. (73)

Combining the above inequality with Proposition 2.2, we have

∥h(t)∥L1 ≤ L3∥h0∥L1 ≤ L3∥ū− v̄∥L1 for all t > 0. (74)
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To translate this result to the L1 stability estimate of two viscosity solutions u, v
we use the homotopy method as in Bianchini-Bressan. Let uθ be the solution
corresponding to the initial data θū+ (1− θ)v̄ . Then let h be defined as

hθ := duθ

dθ
. Then for all t > 0 we have:

∥u(t)− v(t)∥L1 ≤
1∫

0

∥
duθ(t)

dθ
∥L1 dθ ≤ L3∥ū− v̄∥L1 . (75)

Stability Estimates

As claimed in Theorem 1 we want to prove vanishing viscosity limit as εR0 for the
following Cauchy problem

uεt +A(uε)uεx = ε(B(uε)x)x and uε(0, x) = ū(x). (76)

Note that uε(t, x) = u(t/ε, x/ε) where u solves the following problem with fix
viscosity but scaled initial data,

ut +A(u)ux = (B(u)x)x and u(0, x) = ū(εx). (77)

Observe that

TV (ū(ε·))= TV (ū(·)).
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Therefore, we obtain

TV (uε(t))≤ L1TV (ū), (78)

∥uε(t)− vε(t)∥L1= ε∥u(t)− v(t)∥L1 ≤ L2∥ū− v̄∥L1 , (79)

∥uε(t)− uε(s)∥L1 ≤ L3

(
|t− s|+

√
ε|
√
t−

√
s|
)
, (80)

|uε(t, x)− vε(t, x)| ≤ α1∥ū− v̄∥L∞
(
e

c1
ε

(β1t−(x−a)) + e
c1
ε

(β1t+(x−b))
)
. (81)

The convergence of uε as ε→ 0 follows from a standard argument with an
application of Helly’s theorem and the L1 continuity (80).
For δ0 > 0 and compact set K ⊂ U , we consider

D0 := {u : R → Rn; u(−∞) ∈ K and TV (u) ≤ δ0} (82)

By considering a smaller domain D ⊂ D0 which is positively invariant, we can set
S : R×D → D . From (80) and (81) we conclude the time continuity and
continuous dependence on initial data for St .
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Uniqueness of the semi group

We first recall the Riemann solver for equation of hyperbolic systems

ut +A(u)ux = 0, with u(0, x) =

{
ul for x < 0,
ur for x > 0,

(83)

with |ul − ur| is small enough. We consider the i -th rarefaction curve
σ 7→ Ri(σ;u−) starting from u− ∈ Ω which satisfies

d

dσ
Ri(σ;u−) = ri(Ri(σ;u−)) with Ri(0;u−) = u−. (84)

By using implicit function theorem and with the help of strict hyperbolicity, there
exist λ̄1 < · · · < λ̄n−1 , {σi}ni=1 and {wi}ni=0 such that

w0 = ul, wn = ur and wi = Ri(σ;wi−1) for i = 1, 2, · · · , n. (85)

Moreover, λi(Ri(θσi;wi−1)) ∈ (λ̄i−1, λ̄i) for θ ∈ [0, 1] and 1 ≤ i ≤ n where
λ̄0 := −∞ and λ̄n := +∞ . Let us consider scalar flux Fi corresponding to
i -characteristics defined as follows

Fi(ω) :=

ω∫
0

λi(Ri(s;wi−1)) ds. (86)
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Let zi be the unique entropy solution the following Cauchy problem for scalar
conservation laws,

zi,t + Fi(zi)x = 0, (87)

zi(0, x) =

{
0 if x < 0,
σi if x > 0.

(88)

Now, we can describe the solution to (83) as follows,

u(t, x) = Ri(zi(t, x);wi−1) for
x

t
∈ [λ̄i−1, λ̄i] for all i = 1, · · · , n. (89)

We first consider the Riemann data where u−, u+ both lie on i -rarefaction curve.
Since the rarefaction curves are straight lines we can write

ū(x) = u∗ + z̄(x)ri(u
∗) where u∗ = u(−∞).

Consider the flux Fi defined as in (86). Then we note that since the solution uε

is satisfying (1), we obtain

zεt + F (zε)x = ε(µi(u
ε)zεx)x where uε = u∗ + zεri(u

∗) and z(0, x) = z̄(x). (90)

Due to uniform parabolicity, global solution zε exists and zε converges to entropy
solution z of (87).
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Hence, the limit u can be written u(t, x) = u∗ + z(t, x)ri(u
∗) , in other words, uε

converges to a solution of the hyperbolic system, u defined as in (89).

Lemma (Finite speed of propagation)

Let ū, v̄ ∈ D . Then there exists β1 > 0 such that the following holds for a, b ∈ R ,

b∫
a

|St(ū)− St(v̄)| dx ≤ L4

b+β1t∫
a−β1t

|ū− v̄| dx. (91)

We consider an initial data which is perturbation of a Riemann data
ūRie = u−χ(−,0) + u+χ(0,) defined as follows

ū(x) :=

 u− if x < δ,
wi if iδ < x < (i+ 1)δ, with 1 ≤ i ≤ n− 1,
u+ if x > nδ.

(92)

Due to finite speed of propagation, up to a small time t0 , the waves do not
interact with each other and the limit solution when ε goes to 0 can be written as

uδ(t, x) = Ri(zi(t, x−iδ);wi−1) for x ∈ [iδ+λ̂t, (i+1)δ−λ̂t] when t ∈ [0, t0]. (93)
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Now, by sending δ → 0 , we can obtain that the viscosity solution uε converges to
solution of te hyperbolic system for Riemann data. Since a Lipschitz continuous
semigroup is determined by the local in time behavior for piecewise constant data,
this characterizes the limit function u . Moreover, it also says that for any
subsequence εk → 0 , uεk converges to the same limit. This completes the proof
of Theorem 2.
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MERCI POUR VOTRE ATTENTION!!!
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