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This talk is concerned with the vanishing viscosity limit for hyperbolic system of
conservation laws. We consider the following parabolic approximation of the

hyperbolic system
ur + A(u)ue= e(B(u)uz) e fort > 0,z € R, (1)
u(0, z)= u(x) for x € R, (2)

where u : [0,400) x R = R™ and A, B are n X n matrices satisfying the following
conditions for some U C R™.
@ Strict Hyperbolicity: The matrix A(u) is C3 function and has n distinct
eigenvalues \i(u) < -+ < Ap(u) for u e U.
@ The matrix B(u) is a C? function and positive symmetric definite with
B(u) > col,, for u € U and for some co > 0.

(5]
A(u)B(u) = B(u)A(u) for all u € U. (3)

In particular B(u) has n eigenvalues (u;(v))1<i<n -

,Tn as left and right eigenvectors of

In the sequel we consider ly,--+ ,ln, 71, -
A(u) such that

(]| = 1 and li<u>~w<U>:{ 0 iz w
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If we assume that A(u) = Df(u) with f a regular function from R™ in R™, it is
well-known [Glimm, Bressan et al] that the limit vanishing viscosity system which

is conservative:
ut + O f(u) =
u(0, ) = a,

has a unique global weak solution provided that wo is small in TV (R). The class
of uniqueness select some shock which satisfy the Lax condition.

Generally it is assumed that the fields are linearly degenerate (V\;(u) - ri(u) =0)
or genuinely non linear (V;(u) - r;(u) #0).

We can note that we are not able to prove the existence of global weak solution
when the system is mot conservative.

Some questions on the vanishing viscosity limit?

Q1 Can we obtain the existence of global strong solution for the parabolic system
which are uniformly bounded in TV (R)?

Q2 Can we prove that the sequence (us)s>0 converges strongly to w ? When the
system is conservative we can expect that u is a global weak solution of the
limit vanishing viscosity system.

Q3 Is it true that the limit u depends on the viscosity coefficients B(u)?
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Some answers to the previous equations
e Bianchini-Bressan [01]: When B(u) = Id and A(u) = D f(u) then the
sequence of solution (us)e~o is uniformly bounded in L°°(R*, TV (R)). The
sequence converges strongly in Llloc .o t0 u even when the system is not
conservative.
Note that u®(t,z) = u(t/e,x/e) where u solves the following problem with fix
viscosity but scaled initial data,
ur + A(uw)uy = (B(u)y)z and u(0,x) = a(ex). (5)
Observe that:

TV (u(e-))= TV (a(-)).

We are reduced to get TV norm on w. To do this, we wish to estimate the L'
norm of Ozu, it is a priori natural to decompose the vector uy in the basis

(Ti(u))lgign :
Uy = Z@in(u).
i=1

Differentiating (5), we obtain a system of n evolution equations:

Vit + (Nivi)z — (Vi) ze = G-

s il = =
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By maximum principle we deduce that for ¢t > t>0:

t
[Jvi(t, )1 < it )| + /A / |pi(s, x)dxds.

JT IR
Unfortunately in general if we consider a travelling wave solution

u(t,z) = Us(x — M) with limU(2)g——co = U~ and limU(2)z—400 = UT
representing a viscous ¢ shock, we observe that:

/ |pi (¢, z)dz| # 0.
JR

This is the reason why it is important to choose a basis (7;(u))i1<i<n i a clever
way such that ¢; = 0 when we consider a viscous travelling wave. In particular
we wish to have:

Oz Ui(x — At) = v (u, v, \).

It is what are doing Bianchini, Bressan by using the center manifold theorem.
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If each characteristic field of A belongs to the Temple class, that is, the Lax
curves are straight lines and satisfying

Dri(u) -ri(u) =0 for alli=1,2,--- ,n, (6)

then it can be observed that u(t,x) = U(x — ot) with ugs = a(s)r;(U(s)) forms a
travelling wave when U, a,o; satisfying the following system of ODE,

U'(s) = a(s)ri(U(s)),
'(s) = ——— [(n s)) —ai)a(s) — ri(U(s)) e p;
a (5) = Mz(U(S)) [(AZ(U( )) z) ( ) L(U( )) Nz]v

al(s) = 0.

We can show in particular in this case that setting v;(t,x) = a(x — ot), we obtain:

0tv; + (N (U)vi)e — (11:(U)v5) g = 0.
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We set ul :=I;(u) - up and we have
Uy = Z ulri(u). (7)
i

The directional derivative of a function g : R — R"™ is denoted by ( e g for some
¢ € R™. More precisely,

u+2¢) —g(u
o) — 1, 8020~ g(0)
z—0 z
“t+z /\iu;” = Z(u;B(u)n)z = Z(Mu;ﬁ)z = Z(uz zrz-i-z ulu ul r]-r“
[ 1 7 7 1,7
(8)
Hence, after tedious computation we can write an equation on Ozu which gives:
Z(u;t + (Aul)e — (piud)ze)r; = Zp”u ud + Zq,jumu + Z s”ku uluk,
1 1,7,k
where p;j,qi; and s;j;, are defined as follows,
Pij = 7}\,‘ ('r‘j e, —T; ® I'j),
Qij = 2pirj @ i + (pg — pj)rj @ 4,
Sijk =2(rj @ pi)ry o i + pi(rp o (rj @) — (1 0 75) @1;) — (1) ® p1j)r; @ T4
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Furthermore, we set p;.k =1 - pjk, q;k :=1; - q;x and S;’kl =1 - ;5. Writing

v; = ul, , we get

Vit + (Nivi)z — (1iVi)ze = Zp;-kvjvk + ZCI;'kUj,z’Uk + Z S;klvjvkvl
J.k gk gkl

—: $i(u, 01, ,vn).

;Ne rﬁ)t;;: that p};k = q};k = S’Iikk =0 for all 4,k due to the assumption r; e ry =0
or all k.

Triangular system

Let us consider now the following triangular system:

w1t + (f(u1))z =0,
uz,¢ + (g(u1,u2))z = 0.

We consider the corresponding viscosity approximation

{ ut,g + (f(u1))e= 01u1 za,

uz.t + (g(ur,u2))z= [(B(ur, u2)ul z)z + €2U2 42
We can write (7)—(7) in the following form

ut + A(w)ug = (B(u)uz) s, 9)
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where A, B are defined as follows
f/ (ul) 0 a1 0
Au) = P ) and B(u) = . (10)
< Bur us B(u) a2
We assume that S(u) satisfies the following condition
g

u) = (a1 —« L. 11
B = (on =) oS (1)

which corresponds to A(u)B(u) = B(u)A(u). Furthermore we have:

nt = () and e = (7). (12)

Viscous travelling wave

We would like to decompose uz in terms to travelling waves of (9). Let
u(t,z) = U(x — o1t) be a travelling wave corresponding to 1-family. Then we have
the following ordinary differential system

o = f‘l(u)(A(u) —o)v— B~ (u)(v- DB(u))v, (13)

We note that P := (u*,0,A1(u*)) are equilibrium points. We linearize near the
point P;" and get

U =,
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We define V;,1 <7 < 2 as follows

v=>"Viry, Vii=1; v (15)
J

The center subspace will look like
N = {(u,v,0) ER" xR" xR; V; = 0,7 #i}. (16)

Note that dim(N71) = 4, by Center Manifold Theorem , there exists a smooth
manifold M; C R® which is tangent to N7 at Pr.
Furthermore, M has dimension 4 and is locally invariant under the flow of (13).
We can write

Va = p2(u, V1,0). 17)

We can assume that @2 is defined on the domain
Di:={lu—u*|<e, |Vi| <eg, o = M (u")] <e}. (18)

Note that equilibrium points (u,0,0) with |u —u*| < e, |0 — A1 (u*)| < € lie in
M1 we have
p2(u,0,0) =0 for all . (19)

Hence, we may write
p2(u, Vi,0) = a2 (u, V1,0)V1, (20)

for some 3.
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It implies that:
v=Vi(r] + ¥2(u, Vi,0)r3)
We deduce that:

v =Vi(l(u), (ri +¥2(u, Vi, 0)r3))r1(u) + Vi(lz(uw), (r{ + v2(u, Vi, 0)r3)r2(u).
Now, we would like to make a change of coordinates Vi +— X7k as follows
Vi = (v, L (u)) (21)
Therefore, for any point (u,v,0) € My we can write
v=" (n (u) + P2 (u, V1, 0)7»2<u)) = Vi1 (u, Vi, 0). (22)

We note that the gradient of 1-family travelling waves can be written under the
following form

uy = v171 where 7| = (s(u 1;11 Ul)) (23)

with 5

99
s 0
S(U,’Ul,ﬂ'l) = 1,[12(’U,,’U1,0'1) + ﬁ
f (ul) ~ Bus
Furthermore we can check that:

1,0 =01)v1, 71,00 =0(1)v1, 71071, =01)v1. (24)
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We want to have a decomposition of u, as
Uz = 0171 (U, v1,01) + vara(u). (25)
We observe that BT1 = o171 + s1r2 with s1(u,v1,01) a function depending on
(u,v1,01). Set wi=aqv1,; — A1v1 the effective flux, after tedious computation we
obtain that:
(B(w)uz)e — A(u)ue = w1[F1 + v171,0] + (@2v2,2 — A2v2)T2
1
+ OT(wl + o1v1)(81 4+ v181,0)T2 + V101,251,072
1
+ 0201710 + Q101 2V1T1 0 + V1V2T2 @ S172 + Q1V1V2T2 @ 7.

We need now to specify the choice of o1. Assume that we consider a travelling
wave such that ugz = v171 then from the previous equation we should have:

. 1
ug = wir1 + a—(un + o1v1)(s1 + UlSl,v)T2
1

+ (w1 + v101)V1T1 0.

wy

Since we have u; = —oju,, we must choose o1 such that oy = — o
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Since o1 must live in a neighborhood of A\ (u*), we set

o1 =M (u”) 4"9(*g = A1(u”)),

01
with s
f |S‘ <4 ’ "
6(s)=< 5 HII=%0 9| <1and |0 | <4/6:. 26
w={ s 5 wisimani<as (26)
Let us assume now that we consider a solution wu; of our system such that:
ue = v171 (U, v1,01) + vara(u). (27)

If we consider the first coordinate of u; and due to the form of 77, we observe
that v1 = w1 . After computations, we can show now that (v, v2)

v1,t + (AM1v1)e — 101,00 =0, (28)
vat + (A2v2)s — QU2 zz = P2,

with:
¢2 =0(1)[v1,2 (w1 + o1v1)| wrong speed
+ O(1)|w1,zv1 — v1,zw1| change in strength

wi )
+0(1)‘”1[”1(E)§”X{17\ﬂ|<361} change in speed
ol

+ O(1)[|vivz| 4 |v1,2v2]] transversal interactions

(1’10'1,:1:51,(7):17 ”

+o() ail«w] T o1o1)(s1 + v1810))e
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Consider the Cauchy problem hyperbolic system with viscosity,
ut + A(u)us = e(Bw)ua)e, u(0,) = u(x). (29)

There exists L1, La, L3 > 0 and 69 > 0 such that the following holds. If @
satisfies
TV (a) < §o and I}Rm u(z) € K, (30)
ZR—

for some compact set K C U then there exists unique solution u® to the Cauchy
problem (29) and it satisfies the following properties
TV (u®(t)) < L1 TV (@), (31)
lus(®) —o* @)l < Lella — 2|1, (32)

lu(8) = w* ()11 < La (|t — sl + VEIVE—v5l) , (33)

where v¢ is the unique solution corresponding to v satisfying (30).
Purthermore, when A = Df for some f € C, as e = 0 (up to a subsequence),

uf = u in Llloc with uw a solution to hyperbolic system (5).
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Then for every compact set K C U there exist L1, La,d0, a closed domain

D C L}OC(R) and a semigroup S :[0,00) X D — D satisfying the following
properties.

@ Every function @ verifying (30) belongs to D.
@ For any 4,0 € D with & — 70 € L',

1Sty (@) = Sty (W) 1 < Llla — ol p1 + L'[t1 — ta| for any t1,t2 >0,  (34)

for some constants L, L' which are depending only on D.

© For any piece-wise constant initial data u € D there exists T > 0 such that
the following holds. For t € [0,7], St coincides with the solution constructed
by gluing the Riemann problem solutions arising at each jump point.

@ For each @ € D, t+— Si(u) is the unique limit of the sequence uck(t,-) in
Lj,. for any e, — 0 where usk(t,-) solves (1) with initial data @.

Let StI be the semigroup constructed by Bianchini-Bressan for (5). Due to the

characterization S3, we conclude that the semigroup SF constructed as above
coincides with S} .
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Parabolic estimates

Proposition

Let u be a solution to the equation (5) satisfying

. 1 \?2
lue(t, )| 2 < 8o for all t € [0,2] where t := <§> R (35)
0

for some 69 <1 and C > 0. Then we have

2kk2KkZ 80
et Yz < <2
5kk2kZ 80
luzoa @, )l < % (36)
165&%51360

luzes(t, )llLee <

Boris Haspot



Idea of the Proof
0000000000000 000000000

First we have:
(uz)t + A(W)uze = B(w)uzze + (us ® B(u)uz)z — uz © A(u)ug. (37)

We would like to diagonalize the system, making a change of variable v = P(u)ug
we get:

vt + A1 (w)ve = B1(u)vgs — Bl((P_l(u)v) . PP_lv)x — Bl[(P_lv) ° P(P_lv)m]
+ug o P(w)P o4+ Ay (u) (P~ (u)v e P(u)P~tv)
+P(P v e B(u)P )y — P(P~'v) @ A(u)P ™ tu.
pin () =
7X7,(

with A; = PAP~! and By = diag(u1(u), -, tin
change of variable v +— ¥ such that v(t,z) = ( i(t
(Xi)e = . Then we have

PBP~!. Next, we do a
z))) where

Z

wi(u
Tt + A5y = Taw + T([A5 — AT By Y2 ()5, + B1 (P~ 'v) By Y/?%,)
—T (03, Xi,¢) + T(R), (38)

1/2

where A3 = A7B (u*) with:

T(f)i(z) = fi(Xi(z)) where X;( (39)

/ ek
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We consider G as the fundamental solution of the following parabolic equation
wt + Aé)w,r = Wzz, (40)
where A3 = A7B _1/2( *). The function G satisfies the following estimates

IG(t,-

S R, |‘(;1(f7)

T (ORI (41)

We argue by contradiction. To this end, first we assume that the conclusion does
not hold. Due to the assumption of smoothness of initial data, solution is smooth
up to a small time and due to the continuity we can assume that there exists a
time t* such that (47) holds for ¢ € [0,¢*] and equality attains at ¢t =t*. We can
write for ¢ € [0,¢*]:

e = Ga(t/2) x0(1/2) +/GT (t =) {T((A5 - AT BT ().

/2

+Bi(P ) @ By V20) - T(0:0X00) + T(R)  ds.
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[Pl < rprallualps, (42)
[P2llpr < mprilluza| g (43)

We get:

t
0= (®)lIL1 < [1G=(@/2) | [0(2/2)]I L1 + / G (t = 8|2 1T ([A5 — AT By Y2 ()]5a) 1 ds
t/2

+/IIGI(tfs)||L1||T<Bl<P*1v>- TVP0) — T(@0Xid) + T(R)| 1 ds

/2
2/@50 / « —1/2 ~
+ — AlB w)|vz|| 71 ds
\/— (W]l
/2
t
+/\/IZLHB“ “1y) e BIY25, — (31.0Xi4) + Rl 1 ds.
/2
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We note that

—-1/2 ~ ~
1143 — A7 B2 @)]Fe g2 < marpllu— u*||pos Bl 1

< karprprtl|u —u*|| Lo [uzel 1,

Therefore, we get

ﬁ){ﬁlﬂptso 6 3 7 12 1 52 52
Uy (t < ————— +600k7K°K K / —0+—0:|ds
[0l < 2 T e
t/2
2kK1KpdQ
Vi
which implies
2&5%&21350

[ (£, )2 < (44)

NG

This contradicts the assumption that equality holds in (47) at ¢t = ¢t*.
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Proposition

Let u satisfying

Then u are well-defined on [0,%] where T is defined as in (46). Moreover, we have

1
s (®ll 2 < 22 for t € [0, (45)

Suppose that there exists a time 7 < # such that |uz(7)| 1 = %" and

luz ()1 < % for all ¢ € [0,7]. We can write
ut + A(u")uy = B(u™)uze + (B(u) — B(u*))uge + (A(u”) — A(u))uz + uz © Bug.

Therefore,
2Kk B KK A
lrta(P)l1 < rlluo,all +/ el g1 a1 ds +/ a2
By Proposition 2.1 we get
255%/{21;.60

”urT( )HLI < \/Z for t € [O,T}.
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Hence, by the choice of dg

1] K 2kKk2k280 KB o
e (Pl < =2 +2 1P RBYO 46 4

/ K I{A(S()d
s
4 VT —s Vs 2 T—s5 4
0 0
do

Proposition

| w

Let T >t and u be a solution to the equation (5) satisfying
lua(t, g2 < 8o for all t € [0,T] (46)
for some &y < 1 and C' > 0. Then we have for t € [t,T]
luza (t, )l L1 = O(1)65

uwaa(t, L1 = O(1)5 (47)
[uaa (t,)llLoe = O(1)55.
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Interaction estimates

Let z,z# be solutions of the two independent scalar equations,
zt + ()\(t,:v)z)m - (ruz):cw = ¢(t7 (B), (48)
7+ OF(t,2)2%)e — (W 2%)aa = o* (¢, 2), (49)
which is valid for t € [0,T]. We assume that ifnf M#(t,x) —sup A(t,z) > ¢ > 0
L, & t,x
and ||(u, p#)||poo < 00, w,u# >co > 0. Then we have
r 1
// |2(t, z)||27 (¢, z)| dedt < = E1 B2, (50)
c
0 R
T
E; ::/|z(0,:z:)\dﬂc—i—//\cp(t7 x)| dxdt, (51)
R 0 R
T
E> ::/|z7§£(0,:z:)\dac—|—//\4,0#(757 x)| dzdt. (52)
R 0 R
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Set c1 := ||p, u#||Loo . Let z,2# be the solution to (48), (49) with ¢ = ¢# = 0.
Consider

Qe #)i= [ [ K@=yl 1% ()] dudy, (53)
where K is defined as follows
/e ifs>0,
K(s) := s (54)
1/ce?e1 if s <0.

Now, we can calculate using the fact that cK’ — 2c1 K" is precisely the Dirac
masses

2Q.#0) = [ [ K@ - ylsgn(@)z(@)lH# @) + sgn(# w)3F )]=(2)] dody
- / / K(z —y) [sgnu(x))((u(x)z(z))m — (@) # )]
+ sgn(z# @) (# 1) 7% (1) gy — VF 27 (1)) 2()] | dady

< —//(eK'(x — ) — 20 K" (z — y))|2(@)||* (3)] dady
< —/|z<x>||z#<x>|d:c.

T 1

/ /|z(t,$)\\Z#(t,ﬂi)\dﬂ?dtSQ(Z(OLZ#(O))S*IlZ(O)HLle#(O)llLL (55)
0 R C
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Now, we consider z,z# as solutions of (48), (49) respectively when ¢ and (#
may not be identically 0. Using the representation of the solution in terms of

I',T# be the fundamental solutions corresponding to the homogeneous system of
(48)—(49) we can conclude in a similar way. Indeed we can write

z2(t,z) = / I'(t,z,0,v)z(0,y) dy+//1"(t,x,s,y)cp(s,y) dyds. (56)
0 R

Let z, 2% be solutions of (48), (49) respectively and we assume that

T T

[ [1etolasi<an, [ [ie#@olad <, (57)
0 R 0 R

Il 1# Ol <80, Nze@lp, I1# @l < Cud3,  (58)
ez, Aellgr < C-5, lim_Aft,z) =0, (59)

for all t € [0,T). Then we have

T

//|zz(t,x)|\z#(t,x)|dxdt:O(l)é%. (60)
0 R
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Let z, 2% be solutions of (48), (49) respectively and we assume that

T T

[ [1etolasi<s, [ [ie#@olad <, (61)
0 R 0 R

Il 1# Ol <80, lze@lp, ¥ @l < Cud3,  (62)
ez, el <Co8,  lim_At2) =0, (63)

for all t € [0,T). Then we have

T

//|zz(t,x)|\z#(t,x)|d:13dt:0(1)6(2). (64)
0 R
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Let v,w be two scalar functions satisfying:

{Ut + (AL, 2)v)e — (HV)ea = p(t, 2),
wt + At D)w)e — (pw)ze = o7 (¢, 2),

Considering the functionnals as:

A(t) = // v(t, z)w(t, y) — v(t, y)w(t, z)|dzdy,

L(t) = / \/v2(t, ) + w2 (¢, z)dz

we have then the following Lemmas.

The previous functionals satisfies:
4 t)+/|Ux(t,x)w(t,$)—wm(t,cr)v(t,:c)\dz
lo@llzt le® @llzr + llw @)l L1 le (@)l 1 (65)
@ _ NI IO T
FEOS=06 [ WOl + 16 Olls + @l

= = = = =

Boris Haspot



Idea of the Proof
00000000000 e0000000000

TV Bounds

0

Let us consider an initial data satisfying 7'V (@) < W and

lim wu(z) =wu* € K. Then by applying Proposition 2.2, we obtain
&Tr—r—0o0

—~ do
llue ()l L1 @) < NG (66)

where T is defined as in (46). To get the total variation bound in (%,00) we argue
by contradiction as in Bianchini-Bressan. Let T' be defined as follows

T := sup T;Z//\¢i(t,x)\dxdt§% . (67)
P TR

It T < 400, we get a contradiction as follows. From (67), we have
~ 8
e ()]l 11 < 2v/mllue )]l 1 + 50 < 8 for all t € [£,T). (68)

By applying 6, we get

T

| .
//';qém”‘”’“'dmzo(l)ﬁﬁ <3 (69)
Tt R

for sufficiently small dg > 0.
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Indeed we observe that ||v; . (t)|| 11, Hvz# ()]s < Cxd2 are satisfied using the
proposition 2.3.

How to deal with the new terms in the case of the triangular system?
We recall that in ¢2 we have new terms of the form:
(’Ula-l,fl}slyff)l"

Since s1,o = O(1)v1 and o1 = A1 (u™) + 9(—1,1—11 — A1 (u*)), we have to deal with a
term of the form:
W1,z2V1 — V1,z2W1-

First of all we can observe that:
w1t + (A(w)wi)z — 1w ge = 0. (70)
Furthermore we have Ai(u) = f/(u1), we introduce now a new variable
21 = arwi g — A1 (u)wi.
We can check that this new unknown satisfies:

21,6= Q121,20 — (M121)e + A (W1,201 — wW1v1,0).
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We observe now that:
21,201 — V1,021 = W1,20V1 — W11 a2 + 221 (W1V1,2 — W1,201). (71)

Using now (65), we deduce that:

-
/A / |w1,22v1 — W1V1 2| dzdt
t Jr

T T
< /A / |21,0v1 — v1,221| dedt + 2|| A1 || Lo /A / |w1,zv1 — v1,pw1]| dadt
t JR t Jr

< Nz @l o1 Bl + 01l e (e oy IV 1,201 = w1002 s 7y
2z lwrevr = v1ewillpr g xm)-
Using again (65), we conclude since:
[|wi,zv1 — vi,zwi ”Ll([T,T]x}) = 0(1)6(2).
T
Hence, T is not the supremum defined as in (67). Hence, [ [ |¢;(t, z)|dwdt < %0
TR
for all ¢ > t. Subsequently, we obtain for all ¢ > 0:
llwa (@l 1 < o
Stability Estimates
Let @ be the initial defined as follows

@’ := 0a + (1 — 0)s for some @, € D. (72)
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We can now write after tedious computations

Z(hzf + ()\1hL)I - (,U'i,hi):ﬂw)ri
= Zp,,h v + Z Gijrhivjvy + Z Sijhicvj + 27’1?,,-_,-}7,,;71_7-7,,,,
i,7,k i,]
where Dij, @ijk, 5ij,W;; are defined as follows
ﬁij = ()\j — )\7;)7‘]' or; +1; o Ar; —1; OA’r’j,
Gijlo = — (T @ py)rj or; — pj(rpor;) @r; +2(ry  p)r; o vy + pyi(r; @ (rj o 1))
+ (rp®r;)®Brj — (r,erj) e Bri+r;eB(ryer;) —r;eB(ryer;)
+ (1 ® 1) : D*Bry — (rj @ ry,) : D*Bry,
,s\ij = 2#1'(7‘]' o Ti) +7r;e B'rj —Tr;e B'r’i,
’l’ﬁij = (Nz’ - ,u,j)rj e, — Ty .BT'Z' —+7r; oBrj.

By using interaction estimates (Lemma 3 and 6) we can obtain

@) < 1C )H“ for all t > 7. (73)

Combining the above inequality with Proposition 2.2, we have

||h(t)||L1 < L3Hh0HL1 < Ls||a — 'L_)HL1 for all ¢ > 0. (74)
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To translate this result to the L! stability estimate of two viscosity solutions u, v
we use the homotopy method as in Bianchini-Bressan. Let u? be the solution
corresponding to the initial data 6@ + (1 — ). Then let h be defined as

ho = %. Then for all ¢t > 0 we have:

duf (t)

lu(t) — v(®)]] </H 11 d0 < Lalla— ol 1 (75)

Stability Estimates

As claimed in Theorem 1 we want to prove vanishing viscosity limit as R0 for the
following Cauchy problem

ui + A(u®)u, = e(B(u®)z)2 and u®(0,z) = a(z). (76)

Note that u®(t,z) = u(t/e,z/e) where u solves the following problem with fix
viscosity but scaled initial data,

ut + A(u)ugy = (B(u)z)e and u(0,z) = a(ex). (77)
Observe that

TV (a(e))= TV (u(-))-
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Therefore, we obtain

TV (u® (1)< LiTV (a), (78)
lus () — v ()l pr= ellu(t) —vE)lr < Lallu— 2|11, (79)

Jlu® (1) = ()l 2 < Ls (16— sl + VEIVE— V3]), (80)

|u€ (t, x) —oE (t,:E)| < CVl”ﬂ _ EHLOO (e%<51t*(170«)) + e%(51t+(sz))) . (81)

The convergence of u® as € — 0 follows from a standard argument with an
application of Helly’s theorem and the L' continuity (80).
For 69 > 0 and compact set K C U, we consider

Do :={u:R =+ R"; u(—o0) € K and TV (u) < do} (82)
By considering a smaller domain D C Do which is positively invariant, we can set

S:R xD — D. From (80) and (81) we conclude the time continuity and
continuous dependence on initial data for St.
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Uniqueness of the semi group

We first recall the Riemann solver for equation of hyperbolic systems

u; for z <O,

ut + A(u)uz = 0, with u(0,z) = { wr  forz >0 (83)
with |u; — u,| is small enough. We consider the i-th rarefaction curve
o — R;(o;u—) starting from u_ € Q which satisfies
d .
—Ri(osu—) =ri(Ri(o;u—)) with R;(O;u—) =u_. (84)

do

By using implicit function theorem and with the help of strict hyperbolicity, there
exist A\ < -+ < Ap—1, {0:}_; and {w;}}_, such that

wo = uy, wn = upr and w; = Ri(o;w;—1) for i =1,2,--- ,n. (85)
Moreover, \;(R;i(0o;w;—1)) € (Ni—1, ;) for 8 €[0,1] and 1 <4 < n where

Ao := —oo and A, := +00. Let us consider scalar flux F; corresponding to
i-characteristics defined as follows

Fi(w) := /)xi(Ri(s;wi_l)) ds. (86)
0
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Let z; be the unique entropy solution the following Cauchy problem for scalar
conservation laws,

Zi,t + Fl(zz)z = 0, (87)

0 ifz<O,
a0 ={ 0 TSy (59

Now, we can describe the solution to (83) as follows,
u(t,z) = Ri(zi(t, x); wi—1) for % € Ni—1,\i] foralli=1,--- ,n. (89)

We first consider the Riemann data where u_,uy both lie on i-rarefaction curve.
Since the rarefaction curves are straight lines we can write

a(z) = u* + zZ(x)r;(u*) where u* = u(—00).

Consider the flux F; defined as in (86). Then we note that since the solution u®
is satisfying (1), we obtain

2§ + F(2%)z = e(pi(u®)z)s where u® = u* 4 2°7;(v”) and 2(0,z) = z(z). (90)

Due to uniform parabolicity, global solution z¢ exists and z° converges to entropy
solution z of (87).
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Hence, the limit u can be written u(t,z) = u* + 2(¢, z)r;(u*), in other words, u®
converges to a solution of the hyperbolic system, u defined as in (89).

Lemma (Finite speed of propagation)

Let u,v € D. Then there exists 1 > 0 such that the following holds for a,b € R,

b b+p1t
/|St(ﬂ,)—St(77)\dac§ Ly / | — o| dz. (91)
a a—p1t

We consider an initial data which is perturbation of a Riemann data
URie = U—X(—,0) T U+X(0,) defined as follows

u_ ifx<é,
u(zx) := w; fid<z<(i+1)5, withl<i<n-—1, (92)
uy if x > nd.

Due to finite speed of propagation, up to a small time tg, the waves do not
interact with each other and the limit solution when € goes to 0 can be written as

w (t, @) = Ri(z(t, w—i8);w; 1) for @ € [i6+Mt, (i+1)5—At] when ¢ € [0,%0]. (93)
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Now, by sending § — 0, we can obtain that the viscosity solution u® converges to
solution of te hyperbolic system for Riemann data. Since a Lipschitz continuous
semigroup is determined by the local in time behavior for piecewise constant data,
this characterizes the limit function w. Moreover, it also says that for any
subsequence e, — 0, u®k converges to the same limit. This completes the proof
of Theorem 2.

Boris Haspot



Idea of the Proof
0000000000000 00000000e

MERCI POUR VOTRE ATTENTION!!
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