> Asymptotics for the strong solutions of the strongly stratified Boussinesq system with ill-prepared initial data

> > Frédéric Charve

LAMA - Université Paris-Est Créteil

Conférence en l'honneur de Pierre Gilles Lemarié-Rieusset (6 novembre 2024)

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

1 [Introduction, presentation of the model and results](#page-2-0)

- [Incompressible Navier-Stokes system](#page-2-0)
- [Geophysical fluids and general procedure](#page-3-0)
- **[Strongly stratified Boussinesq model](#page-16-0)**

2 [Formal approach for the limit](#page-22-0)

- [Rewriting the pressure](#page-22-0)
- [Dealing with the penalized terms](#page-23-0)
- [Complete limit system candidate](#page-27-0)

3 [Statement of the results](#page-30-0)

- [Strong solutions](#page-37-0)
- [Results for the Boussinesq system](#page-39-0)

[Ideas of the proofs](#page-47-0)

医骨盆 医骨盆

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Incompressible Navier-Stokes system

$\overline{\mathsf{NS}}$

$$
\begin{cases} \partial_t v + v \cdot \nabla v - \nu \Delta v = -\nabla p, & \text{in } \mathbb{R}_+ \times \mathbb{R}^d, \\ \text{div } v = 0, \\ v_{|t=0} = v_0. \end{cases}
$$

- Unknowns: velocity $v(t,x) \in \mathbb{R}^d$, and pressure $p(t,x) \in \mathbb{R}$.
- Viscosity $\nu > 0$.
- Pressure and velocity: $p = -\sum_{i,j=1}^{d} \partial_i \partial_j \Delta^{-1}(v^i v^j)$.
- Scaling invariance: for $\lambda > 0$, $(\lambda v(\lambda^2 t, \lambda x), \lambda^2 p(\lambda^2 t, \lambda x))$.
- **Fundamental results:** Leray (Weak global solution if $v_0 \in L^2(\mathbb{R}^d)$, uniqueness when $d=2)$ and Fujita-Kato (Unique strong local solution if $v_0 \in \dot{H}^{\frac{d}{2}-1}$, global solution for small data). イロメ イ押メ イヨメ イヨメー

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Presentation of geophysical models

- Geophysical fluids: Rotation of the Earth, vertical stratification of the density.
- Scales, Rossby and Froude numbers.
- Small parameters $Ro = \varepsilon$, $Fr = \varepsilon F$ ($F > 0$)

Primitive system

- $U_{\varepsilon}(t,x)=(v_{\varepsilon},\theta_{\varepsilon})=(v_{\varepsilon}^1,v_{\varepsilon}^2,v_{\varepsilon}^3,\theta_{\varepsilon})$
- Velocity: $v_{\varepsilon}(t,x)$, $(t,x) \in \mathbb{R}_+ \times \mathbb{R}^3$,
- Scalar potential temperature: $\theta_{\varepsilon}(t,x)$,
- Geopotential: $\phi_{\varepsilon}(t,x)$.

イロメ イ母メ イヨメ イヨメー

[Formal approach for the limit](#page-22-0) [Statement of the results](#page-30-0) [Ideas of the proofs](#page-47-0) [Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Primitive system

Primitive system

$$
\begin{cases} \partial_t U_{\varepsilon} + U_{\varepsilon} \cdot \nabla U_{\varepsilon} - L U_{\varepsilon} + \frac{1}{\varepsilon} \mathcal{A} U_{\varepsilon} = \frac{1}{\varepsilon} (-\nabla \Phi_{\varepsilon}, 0), \\ \text{div } v_{\varepsilon} = 0, \\ U_{\varepsilon}|_{t=0} = U_{0,\varepsilon}. \end{cases} \tag{PE\varepsilon}
$$

where $\mathit{U}_\varepsilon\cdot\nabla\mathit{U}_\varepsilon\stackrel{{\sf def}}{=} \mathit{v}_\varepsilon\cdot\nabla\mathit{U}_\varepsilon$ and

$$
LU_{\varepsilon} \stackrel{\text{def}}{=} (\nu \Delta v_{\varepsilon}, \nu' \Delta \theta_{\varepsilon}), \quad \mathcal{A} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & F^{-1} \\ 0 & 0 & -F^{-1} & 0 \end{array} \right).
$$

イロト イ押 トイヨ トイヨ トー

 QQ

э

[Formal approach for the limit](#page-22-0) [Statement of the results](#page-30-0) [Ideas of the proofs](#page-47-0) [Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Primitive system

Primitive system

$$
\begin{cases} \partial_t U_{\varepsilon} + U_{\varepsilon} \cdot \nabla U_{\varepsilon} - L U_{\varepsilon} + \frac{1}{\varepsilon} \mathcal{A} U_{\varepsilon} = \frac{1}{\varepsilon} (-\nabla \Phi_{\varepsilon}, 0), \\ \text{div } v_{\varepsilon} = 0, \\ U_{\varepsilon}|_{t=0} = U_{0,\varepsilon}. \end{cases} \tag{PE\varepsilon}
$$

where $\mathit{U}_\varepsilon\cdot\nabla\mathit{U}_\varepsilon\stackrel{{\sf def}}{=} \mathit{v}_\varepsilon\cdot\nabla\mathit{U}_\varepsilon$ and

$$
LU_{\varepsilon} \stackrel{\text{def}}{=} (\nu \Delta v_{\varepsilon}, \nu' \Delta \theta_{\varepsilon}), \quad \mathcal{A} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & F^{-1} \\ 0 & 0 & -F^{-1} & 0 \end{array} \right).
$$

イロト イ押 トイヨ トイヨ トー

 QQ

э

[Formal approach for the limit](#page-22-0) [Statement of the results](#page-30-0) [Ideas of the proofs](#page-47-0) [Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Rotating fluids system

Rotating fluids system

$$
\begin{cases} \partial_t v_{\varepsilon} + v_{\varepsilon} \cdot \nabla v_{\varepsilon} - \nu \Delta v_{\varepsilon} + \frac{e_3 \wedge v_{\varepsilon}}{\varepsilon} = -\frac{1}{\varepsilon} \nabla p_{\varepsilon}, \\ \text{div } v_{\varepsilon} = 0, \\ v_{\varepsilon|t=0} = v_0. \end{cases} \tag{RF\varepsilon}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Remarks

- The terms AU_{ε} et $(\nabla \Phi_{\varepsilon}, 0)$ are said to be penalized and lead the asymptotics together with the divergence-free condition.
- \bullet A skewsymmetric, energy methods easily adapted to obtain Leray and Fujita-Kato results in the spaces ($s \in \mathbb{R}$, $T \in]0, \infty]$:

$$
\begin{cases} \dot{E}_T^s = \mathcal{C}([0, T], \dot{H}^s) \cap L^2([0, T], \dot{H}^{s+1}), \\ \|f\|_{\dot{E}_T^s}^2 \stackrel{\text{def}}{=} \|f\|_{L_T^\infty \dot{H}^s}^2 + \min(\nu, \nu') \|f\|_{L_T^2 \dot{H}^{s+1}}^2. \end{cases}
$$

Homogeneous Sobolev space $\dot{H}^{s}(\mathbb{R}^{3})$ endowed with the norm $||f||_{\dot{H}^{s}} = \left(\int_{\mathbb{R}^{3}} |\xi|^{2s} |\widehat{f}(\xi)|^{2} d\xi\right)^{\frac{1}{2}}.$

≮ロト (何) (日) (日)

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Study of the asymptotics when $\varepsilon \to 0$

Procedure

- The penalized terms impose a limit system and a special structure/decomposition linked with it,
- Notion of "well-/ill-prepared" initial data,
- Globally well-posed limit system (strong solutions),
- Better results for the lifespan of strong solutions are transmitted (for strong enough rotation/stratification i.-e. $\varepsilon \to 0$),
- Convergence rates.

イロメ イ母メ イヨメ イヨメー

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

First approach: well-prepared initial data

- J.-L. Lions, R. Temam, S. Wang ('92, '94),
- T. Beale, A. Bourgeois ('94),
- P. Embid, A. Majda ('96, '98),
- E. Grenier ('97)
- B. Desjardins, E. Grenier ('98),
- I. Gallagher ('98),
- A. Babin, A. Mahalov, B. Nicolaenko ('96, '99, '01).

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Dispersive approach: ill-prepared initial data for (RF_s)

- J.-Y. Chemin, B. Desjardins, I. Gallagher, and E. Grenier ('00, '02, '02 (Ekman),'06),
- A. Dutrifoy ('05),
- \bullet V.-S. Ngo ($\nu \rightarrow 0$) ('09),
- M. Hieber, Y. Shibata ('10),
- T. Iwabuchi, R. Takada ('15, '13, '14),
- Y. Koh, S. Lee, R. Takada (Littman) ('14)
- $FC (23)$

see also:

- I. Gallagher, L. Saint Raymond ('06, '06),
- o I. Gallagher ('08)

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Dispersive approach: ill-prepared initial data for (PE_{ϵ})

- A. Dutrifoy ('04),
- FC ('05, '04, '06, '08, '16, '18, '18, '20, '23),
- FC, V.-S. Ngo ('11),
- H. Koba, A. Mahalov, T. Yoneda $(\nu = \nu', '12)$,
- T. Iwabuchi, A. Mahalov, R. Takada $(\nu = \nu', '17)$,
- S. Scrobogna $(\mathbb{T}^3, '18)$,

Special case: $F=1$,

- J.-Y. Chemin ('97, $\nu \sim \nu'$),
- D. Iftimie (F=1, $\nu = \nu' = 0$) ('99)
- FC ('18, general case)

④ → ④ → → → → → →

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Asymptotics for the Rotating fluids

Limit system: 2D-NS with 3 components (Global strong solutions)

$$
\begin{cases}\n\partial_t \bar{u}_h + \bar{u}_h \cdot \nabla_h \bar{u}_h - \nu \Delta_h \bar{u}_h = -\nabla_h \bar{\rho}, \\
\partial_t \bar{u}_3 + \bar{u}_h \cdot \nabla_h \bar{u}_3 - \nu \Delta_h \bar{u}_3 = 0, \\
\operatorname{div}_h \bar{u}_h = 0, \\
\bar{u}_{|t=0} = \bar{u}_0.\n\end{cases} \tag{2D-NS}
$$

Asymptotics (Chemin, Desjardins, Gallagher, Grenier, 2002)

$$
\bullet \ \ v_{\varepsilon|t=0} = v_0(x) + \bar{u}_0(x_h).
$$

• Direct study of $v_{\varepsilon} - \bar{u} - W_{\varepsilon}$, where W_{ε} solves

$$
\begin{cases} \partial_t W_{\varepsilon} - \nu \Delta W_{\varepsilon} + \frac{1}{\varepsilon} \mathbb{P}(e_3 \wedge W_{\varepsilon}) = 0, \\ W_{\varepsilon|t=0} = v_0. \end{cases}
$$

 \circ \sim

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Asymptotics for the Rotating fluids

- Taylor-Proudman (Physics) theorem which states for strong rotation a column structure (that is a limit velocity independant of x_3).
- We have to consider non-conventional initial data to reach such limit (for "Navier-Stokes"-classical initial data $v_0 \in L^2(\mathbb{R}^3)$ or $\dot{H}^{\frac{1}{2}}(\mathbb{R}^3)$, the limit is zero)

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Asymptotics for the Primitive system

Limit system: Quasi-geostrophic system

$$
\begin{cases} \partial_t \widetilde{\Omega}_{QG} + \widetilde{v}_{QG} . \nabla \widetilde{\Omega}_{QG} - \Gamma \widetilde{\Omega}_{QG} = 0, \\ \widetilde{U}_{QG} = (\widetilde{v}_{QG}, \widetilde{\theta}_{QG}) = (-\partial_2, \partial_1, 0, -F\partial_3) \Delta_F^{-1} \widetilde{\Omega}_{QG}, \end{cases} (QG)
$$

Special structure: from the potential vorticity:

$$
\Omega(U) \stackrel{\text{def}}{=} \partial_1 v^2 - \partial_2 v^1 - F \partial_3 \theta,
$$

we define the quasi-geostrophic and oscillating/oscillatory parts of a 4-components function U :

$$
U_{QG} \stackrel{\text{def}}{=} \begin{pmatrix} -\partial_2 \\ \partial_1 \\ -F\partial_3 \end{pmatrix} \Delta_F^{-1} \Omega(U), \text{ and } U_{osc} \stackrel{\text{def}}{=} U - U_{QG}. \quad (1)
$$

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Asymptotics for the Primitive system

Asymptotics (FC $'04 \rightarrow' 23$)

- Global strong solutions for the limit system (no stretching)
- $\bullet \ \ U_{\varepsilon|t=0} = U_{0,\varepsilon,QG} + U_{0,\varepsilon,osc}$ (ill-prepared).
- Direct study of $U_{\varepsilon} U_{OG} W_{\varepsilon}$, where W_{ε} solves

$$
\begin{cases} \partial_t W_{\varepsilon} - L W_{\varepsilon} + \frac{1}{\varepsilon} \mathbb{P} A W_{\varepsilon} = -G^b - G^l, \\ W_{\varepsilon|t=0} = U_{0,\varepsilon,\rm osc} \end{cases}
$$

- Frequency truncation when $\nu \neq \nu'$.
- Weak, strong solutions, potential vorticity patches, convergence rates, anisotropic viscosities...

イロト イ押 トイヨ トイヨト

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Strongly stratified Boussinesq model without rotation

Strongly stratified Boussinesq system

$$
\begin{cases} \partial_t U_{\varepsilon} + U_{\varepsilon} \cdot \nabla U_{\varepsilon} - L U_{\varepsilon} + \frac{1}{\varepsilon} B U_{\varepsilon} = \frac{1}{\varepsilon} (-\nabla \Phi_{\varepsilon}, 0), \\ \text{div } v_{\varepsilon} = 0, \\ U_{\varepsilon}|_{t=0} = U_{0,\varepsilon}. \end{cases} \tag{S_{\varepsilon}}
$$

$$
LU_{\varepsilon} \stackrel{\text{def}}{=} (\nu \Delta v_{\varepsilon}, \nu' \Delta \theta_{\varepsilon}), \quad \mathcal{B} \stackrel{\text{def}}{=} \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array} \right).
$$

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

[Formal approach for the limit](#page-22-0) [Statement of the results](#page-30-0) [Ideas of the proofs](#page-47-0) [Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Weak and strong solutions

For any fixed $\varepsilon > 0$

Theorem (J. Leray, 1933)

If $U_{0,\varepsilon} \in L^2(\mathbb{R}^3)$, then there exists a Leray solution $U_{\varepsilon}\in L^{\infty}(\mathbb{R}_+, L^2(\mathbb{R}^3))\cap L^2(\mathbb{R}_+, \dot{H}^1(\mathbb{R}^3))$ (+energy).

No uniqueness $(d = 3)$.

Theorem (H. Fujita and T. Kato, 1963, scaling invariance)

If $U_{0,\varepsilon} \in \dot{H}^{\frac{1}{2}}(\mathbb{R}^{3}),$ then there exists a unique maximal lifespan $T_{\varepsilon}^*>0$ and a unique solution $U_{\varepsilon}\in \mathcal{C}_T\dot{H}^{\frac{1}{2}}(\mathbb{R}^3)\cap L^2_T\dot{H}^{\frac{3}{2}}(\mathbb{R}^3))$ for all $T < T_{\varepsilon}^*$. $+$ blow-up criteria and weak-strong uniqueness.

イロメ イ押メ イヨメ イヨメ

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Previous results, inviscid case $\nu = \nu' = 0$

• K. Widmayer (CMS 2018): if U_{ε} is a regular bounded solution, it converges to $(\bar{u}(x),0,0)$ where \bar{u} : $\mathbb{R}_+\times\mathbb{R}^3\to\mathbb{R}^2$ solves (\mathbb{P}_2 orthogonal projector onto horizontal divergence free vectorfields):

$$
\begin{cases} \partial_t \bar{u} + \bar{u} \cdot \nabla_h \bar{u} = -\nabla_h \bar{\rho}, \\ \operatorname{div}_h \bar{u} = 0, \\ \bar{u}_{|t=0} = (\mathbb{P}_2 U_0)^h, \end{cases}
$$
 (2)

• R. Takada (ARMA 2019): Existence result and convergence rate:

$$
||U_{\varepsilon}-(\bar u,0,0)||_{L^q_T W^{1,\infty}}\leq C{\varepsilon}^{\frac{1}{q}}.
$$

イロメ イ押メ イヨメ イヨメー

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

S. Lee, R. Takada (IUMJ 2017): $(\nu = \nu')$ Let $s \in]\frac{1}{2}$ $\frac{1}{2}$, $\frac{5}{8}$ $\frac{5}{8}$]. There exists $\delta_1, \delta_2 > 0$ such that for any initial data \mathcal{U}_0 such that $\mathbb{P}_2 U_0 \in \dot{H}^{\frac{1}{2}}$, $\mathcal{U}_{0,osc} \overset{def}{=} (I_d - \mathbb{P}_2)U_0 \in \dot{H}^s$ satisfy:

$$
\|\mathbb{P}_2 U_0\|_{\dot{H}^{\frac{1}{2}}} \leq \delta_2, \text{ and } \|U_{0,\text{osc}}\|_{\dot{H}^s} \leq \delta_1 \varepsilon^{-\frac{1}{2}(s-\frac{1}{2})},
$$

there exists a unique global **mild solution** $U_\varepsilon\in L^4(\dot{W}^{\frac{1}{2},3}).$

if $\|\mathbb{P}_2 U_0\|_{\dot{H}^{\frac{1}{2}}}$ is sufficiently small, there exists a global solution for small enough ε .

≮ロト (何) (日) (日)

[Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

S. Scrobogna (DCDS 2020): Let $U_0\in H^{\frac{1}{2}}(\mathbb{R}^3)$ with $U_{0,S} = \mathbb{P}_2 U_0 \in H^1(\mathbb{R}^3)$. There exists $\varepsilon_0 > 0$ such that for any $\varepsilon \leq \varepsilon_0$, there exists a unique global solution $\mathit{U}_\varepsilon \in \dot{E}^{\frac{1}{2}}.$ Moreover, U_{ε} converges to $(\tilde{v}^h, 0, 0)$, where \tilde{v}^h is the unique stokes system: global solution of the two-component Navier-Stokes system:

$$
\begin{cases} \partial_t \widetilde{v}^h + \widetilde{v}^h \cdot \nabla_h \widetilde{v}^h - \nu \Delta \widetilde{v}^h & = -\nabla_h \widetilde{\pi}^0, \\ \operatorname{div}_h \widetilde{v}^h = 0, \\ \widetilde{v}^h_{|t=0} = \mathbb{P}_2 U_0, \end{cases}
$$
 (3)

Something surprizing...

 \mathcal{A} and \mathcal{A} . The set of \mathcal{B} is a set of \mathcal{B} is a set of \mathcal{B}

つへへ

[Formal approach for the limit](#page-22-0) [Statement of the results](#page-30-0) [Ideas of the proofs](#page-47-0) [Incompressible Navier-Stokes system](#page-2-0) [Geophysical fluids and general procedure](#page-3-0) [Strongly stratified Boussinesq model](#page-16-0)

Extension and question

Question: why does the previous limit not depend on ν' ?

Before answering this question, let us precisely see how is obtained the limit system.

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 QQ

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Formal approach for the limit: rewriting the pressure

Taking the divergence of the velocity part of (S_{ε}) we can separate the geopotential into $\Phi_{\varepsilon} \stackrel{def}{=} P^1_{\varepsilon} + \varepsilon P^0_{\varepsilon}$, where:

$$
\begin{cases}\nP_{\varepsilon}^{1} = -\Delta^{-1}\partial_{3}\theta_{\varepsilon}, \\
P_{\varepsilon}^{0} = -\sum_{i,j=1}^{3}\partial_{i}\partial_{j}\Delta^{-1}(v_{\varepsilon}^{i}v_{\varepsilon}^{j}),\n\end{cases}
$$
\n(4)

leading to the following rewriting:

$$
\begin{cases}\n\partial_t v_{\varepsilon}^1 + v_{\varepsilon} \cdot \nabla v_{\varepsilon}^1 - \nu \Delta v_{\varepsilon}^1 &= -\partial_1 P_{\varepsilon}^0 - \frac{1}{\varepsilon} \partial_1 P_{\varepsilon}^1, \\
\partial_t v_{\varepsilon}^2 + v_{\varepsilon} \cdot \nabla v_{\varepsilon}^2 - \nu \Delta v_{\varepsilon}^2 &= -\partial_2 P_{\varepsilon}^0 - \frac{1}{\varepsilon} \partial_2 P_{\varepsilon}^1, \\
\partial_t v_{\varepsilon}^3 + v_{\varepsilon} \cdot \nabla v_{\varepsilon}^3 - \nu \Delta v_{\varepsilon}^3 &= -\partial_3 P_{\varepsilon}^0 - \frac{1}{\varepsilon} (\partial_3 P_{\varepsilon}^1 + \theta_{\varepsilon}), \\
\partial_t \theta_{\varepsilon} + v_{\varepsilon} \cdot \nabla \theta_{\varepsilon} - \nu' \Delta \theta_{\varepsilon} &= \frac{1}{\varepsilon} v_{\varepsilon}^3, \\
\text{div } v_{\varepsilon} &= 0.\n\end{cases} \tag{5}
$$

→ (何) > → (目) → (目) →

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Formal approach for the limit: dealing with the penalized terms

Assuming that $(\nu_\varepsilon, \theta_\varepsilon, P^0_\varepsilon, P^1_\varepsilon) \longrightarrow (\widetilde{\nu}, \theta, P^0, P^1)$ in a sufficiently strong way (for derivatives and nonlinear terms...) if we hope in addition that:

$$
\begin{cases}\n-\frac{1}{\varepsilon}\partial_1 P_{\varepsilon}^1 & \longrightarrow \widetilde{X}, \\
-\frac{1}{\varepsilon}\partial_2 P_{\varepsilon}^1 & \longrightarrow \widetilde{Y}, \\
\end{cases}\n\begin{cases}\n-\frac{1}{\varepsilon}(\partial_3 P_{\varepsilon}^1 + \theta_{\varepsilon}) & \longrightarrow \widetilde{Z}, \\
\frac{1}{\varepsilon} \nu_{\varepsilon}^3 & \longrightarrow \widetilde{T}, \\
\end{cases}\n\tag{6}
$$

we need that:

$$
\begin{cases} \partial_1 \widetilde{P}^1 = \partial_2 \widetilde{P}^1 = 0, \\ \partial_3 \widetilde{P}^1 + \widetilde{\theta} = 0, \\ \widetilde{v}^3 = 0, \end{cases} \tag{7}
$$

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Formal approach for the limit: dealing with the penalized terms

which implies:

$$
\begin{cases}\n\widetilde{P}^1 \text{ and } \widetilde{\theta} = -\partial_3 \widetilde{P}^1 \text{ only depend on } x_3, \\
\widetilde{v}^3 = 0.\n\end{cases}
$$
\n(8)

Additionnally, $\widetilde{P}^0 = -\sum_{i,j=1}^2 \Delta^{-1} \partial_i \partial_j (\widetilde{v}^i \widetilde{v}^j)$ and defining $\widetilde{v}^h \stackrel{\text{def}}{=} (\widetilde{v}^1, \widetilde{v}^2)$, we have:

$$
\operatorname{div}_h \widetilde{v}^h \stackrel{\text{def}}{=} \partial_1 \widetilde{v}^1 + \partial_2 \widetilde{v}^2 = 0.
$$

∢ロト ⊀母 ▶ ∢∃ ▶ ∢∃ ▶..

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Formal approach for the limit: how to obtain the limit system ?

The limit system turns into:

$$
\begin{cases}\n\partial_t \widetilde{v}^1 + \widetilde{v}^h \cdot \nabla_h \widetilde{v}^1 - \nu \Delta \widetilde{v}^1 &= -\partial_1 \widetilde{P}^0 + \widetilde{X}, \\
\partial_t \widetilde{v}^2 + \widetilde{v}^h \cdot \nabla_h \widetilde{v}^2 - \nu \Delta \widetilde{v}^2 &= -\partial_2 \widetilde{P}^0 + \widetilde{Y}, \\
0 &= -\partial_3 \widetilde{P}^0 + \widetilde{Z}, \\
\partial_t \widetilde{\theta} - \nu' \partial_3^2 \widetilde{\theta} &= \widetilde{T}, \\
\operatorname{div}_h \widetilde{v} &= 0.\n\end{cases}
$$
\n(9)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 QQ

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Formal approach for the limit: How to get rid of parameters ?

Using once more the divergence-free (and 2d-divergence-free) conditions and the vorticity (see later), we obtain that:

$$
\begin{cases} \partial_1 \widetilde{X} + \partial_2 \widetilde{Y} + \partial_3 \widetilde{Z} = 0. \\ \partial_1 \widetilde{Y} - \partial_2 \widetilde{X} = 0, \end{cases}
$$

wich formally leads to (we recall that $\widetilde{Z} = \partial_3 \widetilde{P}^0$):

$$
(\widetilde{X},\widetilde{Y})=-\nabla_h\partial_3^2\Delta_h^{-1}\widetilde{P}^0.
$$

イロメ イ何メ イヨメ イヨメー

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Writing the limit system

Limit system

Gathering the previous informations, the formal limit is written as:

$$
\begin{cases}\n\partial_t \widetilde{v}^h + \widetilde{v}^h \cdot \nabla_h \widetilde{v}^h - \nu \Delta \widetilde{v}^h = -\nabla_h \widetilde{\pi}^0, \\
\operatorname{div}_h \widetilde{v}^h = 0, \\
\partial_t \widetilde{\theta} - \nu' \partial_3^2 \widetilde{\theta} = \widetilde{\mathcal{T}},\n\end{cases}
$$
\nwhere $\widetilde{\pi}^0 = \Delta_h^{-1} \Delta \widetilde{P}^0 = -\sum_{i,j=1}^2 \Delta_h^{-1} \partial_i \partial_j (\widetilde{v}^i \widetilde{\nu}^j)$ and $\widetilde{P}^1, \widetilde{\theta}, \widetilde{\mathcal{T}}$ only depend on (t, x_3) .

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 2990

∍

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

Limit system

Remarks

- Nothing forces $\theta(x_3)$ to be zero.
- How to deal with $\mathcal{T} = \lim\limits_{\varepsilon \to 0}$ $\frac{v_\varepsilon^3}{\varepsilon}$? Treat it like a parameter.
- We will consider the case $\widetilde{T}=0$ and initial data according to:

$$
U_{\varepsilon|t=0}(x)=U_{0,\varepsilon}(x)+(0,0,0,\widetilde{\theta}_{0,\varepsilon}(x_3)).
$$

Vorticity formulation: if $\widetilde{\omega} = \omega(\widetilde{v}) = \partial_1 \widetilde{v}^2 - \partial_2 \widetilde{v}^1$ we rewrite the velocity system as follows:

$$
\begin{cases} \partial_t \widetilde{\omega} + \widetilde{v}^h \cdot \nabla_h \widetilde{\omega} - \nu \Delta \widetilde{\omega} = 0, \\ \widetilde{v}^h = \nabla_h^{\perp} \Delta_h^{-1} \widetilde{\omega}. \end{cases}
$$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

E

[Rewriting the pressure](#page-22-0) [Dealing with the penalized terms](#page-23-0) [Complete limit system candidate](#page-27-0)

The vorticity formulation suggests the following structure:

Stratified/Oscillating decomposition

If f is a R^4 -valued function, its vorticity is defined by:

$$
\omega(f) = \partial_1 f^2 - \partial_2 f^1.
$$

From this we define (denoting $\mathrm{div\,}_hf^h\stackrel{def}{=}\partial_1f^1+\partial_2f^2)$:

$$
f_S = \mathbb{P}_2 f = \begin{pmatrix} \nabla_h^{\perp} \Delta_h^{-1} \omega(f) \\ 0 \\ 0 \end{pmatrix}, \text{ and}
$$

$$
f_{osc} = f - f_S = (I_d - \mathbb{P}_2)f = \begin{pmatrix} \nabla_h \Delta_h^{-1} \operatorname{div}_h f^h \\ f^3 \\ f^4 \end{pmatrix}
$$

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Statement of the results: aim of our study

Aim: Prove that for the following initial data

$$
U_{\varepsilon|t=0}(x)=U_{0,\varepsilon,S}(x)+U_{0,\varepsilon,osc}(x)+\left(\begin{array}{c}0\\0\\0\\ \widetilde{\theta}_{0,\varepsilon}(x_3)\end{array}\right),
$$

with:

$$
\begin{cases} U_{0,\varepsilon,S}(x) \underset{\varepsilon \to 0}{\longrightarrow} (\widetilde{v}_0^h(x), 0, 0), \\ \widetilde{\theta}_{0,\varepsilon}(x_3) \underset{\varepsilon \to 0}{\longrightarrow} \widetilde{\theta}_0(x_3), \end{cases} \qquad (f^h = (f^1, f^2))
$$

the solutions become global and converge (as $\varepsilon \to 0$) towards those of the following system:

≮ロト ⊀何ト ⊀ ヨト ⊀ ヨト

 QQ

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Aim of our study

$$
\begin{cases} \partial_t \widetilde{v}^h + \widetilde{v}^h \cdot \nabla_h \widetilde{v}^h - \nu \Delta \widetilde{v}^h & = -\nabla_h \widetilde{\pi}^0, \\ \operatorname{div}_h \widetilde{v}^h = 0, \\ \widetilde{v}^h_{|t=0} = \widetilde{v}^h_0, \end{cases}
$$
(10)

and

$$
\begin{cases} \partial_t \widetilde{\theta} - \nu' \partial_3^2 \widetilde{\theta} = 0, \\ \widetilde{\theta}_{|t=0} = \widetilde{\theta}_0. \end{cases}
$$
 (11)

Remarks:

- (11) is globally well-posed when $\widetilde{\theta}_0 \in \dot{B}^s_{2,1}(\mathbb{R})$ (for any $s \in \mathbb{R}$).
- [\(10\)](#page-31-1) is globally well-posed when $\widetilde{v}_0^h \in H^{\frac{1}{2}+\delta}$ (\mathbb{R}^2 -valued) with $\dim \widetilde{v}_0^h = 0$ ($f \in \mathbb{R}^3 > 0$) $\operatorname{div}_h \widetilde{v}_0^h = 0$ (for $\delta > 0$).

イロト イ押 トイヨ トイヨト

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

What system to study ?

To simplify, we assume in this talk that $\widetilde{\theta}_{0,\varepsilon}(x_3) = \widetilde{\theta}_0(x_3)$ and $U_{0,\varepsilon,S} (x) = (\widetilde{v}_0^h, 0, 0)$ so that:

$$
U_{\varepsilon|t=0}(x)=U_{0,\varepsilon}(x)+(0,0,0,\widetilde{\theta}_0(x_3)),
$$

where

$$
U_{0,\varepsilon}(x)=(\widetilde{v}^h(x),0,0)+U_{0,\varepsilon,osc}(x).
$$

Problem: the classical theorems are not able to deal with unconventional initial data:

$$
U_{0,\varepsilon}(x_1,x_2,x_3)+(0,0,0,\widetilde{\theta}_0(x_3)),
$$

イロト イ押 トイヨ トイヨト

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Rewriting the limit system

Setting $\widetilde{U} \stackrel{\mathsf{def}}{=} (\widetilde{v}^h, 0, \widetilde{\theta}),$

Final form of the limit system:

$$
\left\{\begin{aligned}\n\partial_t \widetilde{U} + \widetilde{U} \cdot \nabla \widetilde{U} - L \widetilde{U} + \frac{1}{\varepsilon} \mathcal{B} \widetilde{U} &= -\widetilde{G} - \begin{pmatrix} \nabla \widetilde{g} \\
0 \end{pmatrix} - \frac{1}{\varepsilon} \begin{pmatrix} \nabla \widetilde{P}^1 \\
0 \end{pmatrix}, \\
\frac{\text{div } \widetilde{v} &= 0}{\widetilde{U}_{|t=0} = (\widetilde{v}_0^h, 0, \widetilde{\theta}_0)}.\n\end{aligned}\right.
$$

where

$$
\widetilde{G} = \mathbb{P}\left(\begin{array}{c} \partial_1 \widetilde{\pi}^0 \\ \partial_2 \widetilde{\pi}^0 \\ 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} \partial_1 \partial_3^2 \Delta^{-1} \Delta_h^{-1} \widetilde{q}_0 \\ \partial_2 \partial_3^2 \Delta^{-1} \Delta_h^{-1} \widetilde{q}_0 \\ -\partial_3 \Delta^{-1} \widetilde{q}_0 \\ 0 \end{array}\right) \sim \widetilde{v}^h \cdot \nabla \widetilde{v}^h.
$$

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

What system to study ?

Putting $D_{\varepsilon} \stackrel{def}{=} U_{\varepsilon} - \widetilde{U}$ and $V_{\varepsilon} = (D_{\varepsilon}^1, D_{\varepsilon}^2, D_{\varepsilon}^3)$, we will study:

$$
\begin{cases}\n\partial_t D_{\varepsilon} - LD_{\varepsilon} + \frac{1}{\varepsilon} BD_{\varepsilon} = \widetilde{G} - \begin{pmatrix} \nabla q_{\varepsilon} \\
0 \end{pmatrix} \\
-\begin{bmatrix}\nD_{\varepsilon} \cdot \nabla D_{\varepsilon} + \begin{pmatrix} D_{\varepsilon} \cdot \nabla \widetilde{v}^h \\
0 \end{pmatrix} + \widetilde{v}^h \cdot \nabla_h D_{\varepsilon}\n\end{cases}\n\text{div } V_{\varepsilon} = 0, \\
D_{\varepsilon}|_{t=0} = U_{0,\varepsilon,osc}.\n\end{cases}
$$
\n(12)

Classical initial data.

イロト イ押 トイヨ トイヨト

 2990

э

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Study of the limit systems

Theorem (1D-Heat equation):

Let $s\in\mathbb{R}$. For any $\widetilde{\theta}_0\in \dot{B}^s_{2,1}(\mathbb{R})$ there exists a unique global solution $\widetilde{\theta}$ of [\(11\)](#page-31-0) and for all $t > 0$, we have:

$$
\|\tilde{\theta}\|_{\tilde{L}_t^{\infty}\dot{B}_{2,1}^s} + \nu'\|\tilde{\theta}\|_{L_t^1\dot{B}_{2,1}^{s+2}} \le \|\tilde{\theta}_0\|_{\dot{B}_{2,1}^s}.
$$
 (13)

More generally for $s \in \mathbb{R}$ and $p, r \in [1, \infty]$, there exists a constant $C > 0$ such that if $\widetilde{\theta}_0 \in \dot{B}^s_{p,r}(\mathbb{R})$ then for all $q \in [1,\infty]$

$$
\|\widetilde{\theta}\|_{\widetilde{L}_t^q \dot{B}_{p,r}^{s+\frac{2}{q}}} \leq \frac{C}{(\nu')^{\frac{1}{q}}} \|\widetilde{\theta}_0\|_{\dot{B}_{p,r}^s}.
$$
\n(14)

∢ロ ▶ ∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

つくい

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Study of the limit systems

Theorem (Velocity system, FC '23):

Let $\delta > 0$ and $\widetilde{v}_0^h \in H^{\frac{1}{2}+\delta}$ (\mathbb{R}^2 -valued) with $\mathrm{div}_h \widetilde{v}_0$
(10) has a simple which satisfy $\widetilde{\sim} h \in \mathcal{F}^{\frac{1}{2}+\delta}$. $\widetilde{\sim} 0$ $\widetilde{\psi}_0^h\in H^{\frac{1}{2}+\delta}$ (\mathbb{R}^2 -valued) with $\mathrm{div\,}_h\widetilde{\mathsf{v}}^h_0=0.$ System [\(10\)](#page-31-1) has a unique global solution $\widetilde{v}^h \in E^{\frac{1}{2}+\delta} = \dot{E}^0 \cap \dot{E}^{\frac{1}{2}+\delta}$ and
 $\exists C = C_2 \Rightarrow 0, t > 0$ $\exists C = C_{\delta,\nu} > 0, t \geq 0$:

$$
\|\widetilde{v}^{h}\|_{L^{\infty}H^{\frac{1}{2}+\delta}}^{2}+\nu\|\nabla\widetilde{v}^{h}\|_{L^{2}H^{\frac{1}{2}+\delta}}^{2}\leq C_{\delta,\nu}\|\widetilde{v}_{0}^{h}\|_{H^{\frac{1}{2}+\delta}}^{2}\max(1,\|\widetilde{v}_{0}^{h}\|_{H^{\frac{1}{2}+\delta}}^{\frac{1}{\delta}})\leq C_{\delta,\nu}\max(1,\|\widetilde{v}_{0}^{h}\|_{H^{\frac{1}{2}+\delta}})^{2+\frac{1}{\delta}}, (15)
$$

Moreover, we can also bound the term \widetilde{G} : for all $s \in [0, \frac{1}{2} + \delta]$,

$$
\int_0^\infty \|\widetilde{G}(\tau)\|_{\dot{H}^s} d\tau \leq C_{\delta,\nu} \max(1, \|\widetilde{v}_0^h\|_{H^{\frac{1}{2}+\delta}})^{2+\frac{1}{\delta}}.\tag{16}
$$

The State State

Existence of local strong (Fujita-Kato) solutions

Theorem (Existence of local strong solutions, FC CDPE '24)

Let $\varepsilon > 0$, $\delta \in]0,1]$, $\widetilde{v}_0^h \in H^{\frac{1}{2}+\delta}(\mathbb{R}^3)$ and for some fixed $\beta > 0$, $\widetilde{\theta}_0\in \dot{B}^{-\frac{1}{2}}_{2,1}(\mathbb{R})\cap \dot{B}^{-\frac{1}{2}+\beta}_{2,1}(\mathbb{R})$. For any $U_{0,\varepsilon} = U_{0,\varepsilon,S}+U_{0,\varepsilon,osc}\in H^{\frac{1}{2}}_{2,1}$ there exists a unique local solution D_ε of (12) with lifespan $\,_{\varepsilon}^*>0$ such that for any $\mathcal{T} < \mathcal{T}^*_\varepsilon$, $D_\varepsilon \in E^{\frac{1}{2}}_{\mathcal{T}} = \dot{E}^0_{\mathcal{T}} \cap \dot{E}^{\frac{1}{2}}_{\mathcal{T}}.$ Moreover, the following properties are true:

Regularity propagation: if in addition $U_{0,\varepsilon} \in \dot{H}^s$ for some $s\in [0,\frac{1}{2}+\delta]$ then for any $\mathcal{T} < \mathcal{T}_{\varepsilon}^{*}$, $D_{\varepsilon} \in \dot{E}_{\mathcal{T}}^{0} \cap \dot{E}_{\mathcal{T}}^{s}$.

Blow-up criterion: $\int_0^{T_\varepsilon^*} \|\nabla D_\varepsilon(\tau)\|^2_{\vec{P}}$ $\frac{2}{H^{\frac{1}{2}}}d\tau < \infty \Longrightarrow T_{\varepsilon}^* = \infty.$

And now for the initial data $U_{\varepsilon|t=0} = (\widetilde{v}_0(x), 0, \theta_0(x_3)) + U_{0,\varepsilon,osc}$,

イロメ イ何メ イヨメ イヨメーヨ

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Global existence and convergence: simplified statement

Theorem (Global existence and convergence, FC CDPE '24)

For all
$$
\nu, \nu', \mathbb{C}_0 > 0
$$
, $\delta \in]0, \frac{1}{8}]$, $\widetilde{\nu}_0^h$, $\widetilde{\theta}_0$ and $U_{0,\epsilon,osc}$ with,

$$
\|\widetilde{v}_0^h\|_{H^{\frac{1}{2}+\delta}(\mathbb{R}^3)} \leq \mathbb{C}_0 \quad \text{and } \|\widetilde{\theta}_0\|_{\dot{B}^{-\frac{3}{4}}_{2,1}(\mathbb{R})\cap \dot{B}^{-\frac{1}{4}+\delta}_{2,1}(\mathbb{R})} \leq \mathbb{C}_0,
$$

there exist $\varepsilon_0, K, \gamma, c, \mathbb{D}_0, q > 0$ such that if (for any $\varepsilon > 0$)

$$
||U_{0,\varepsilon,osc}||_{L^q} + |||D|^{\frac{1}{2}}U_{0,\varepsilon,osc}||_{L^q} + ||U_{0,\varepsilon,osc}||_{\dot{H}^{\frac{1}{2}-c\delta}\cap\dot{H}^{\frac{1}{2}+\delta}} \leq \mathbb{C}_0\varepsilon^{-\gamma},
$$
\n(17)

then for any $\varepsilon \in]0, \varepsilon_0]$, there exists a unique global strong solution U_{ε} of (S_{ε}) (S_{ε}) (S_{ε}) which satisfies $U_{\varepsilon}-(\widetilde{v}^h,0,\widetilde{\theta})\in \dot{E}^0\cap \dot{E}^{\frac{1}{2}+\frac{\delta}{2}}$ and

$$
||U_{\varepsilon}-(\widetilde{v}^h,0,\widetilde{\theta})||_{L^2(\mathbb{R}_+,L^{\infty}(\mathbb{R}^3)}\leq \mathbb{D}_0\varepsilon^K.
$$

 $0Q$

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Link with the classical Boussinesq system

Our system is related to:

The classical Boussinesq system

$$
\begin{cases} \partial_t v + v \cdot \nabla v - \nu \Delta v + \kappa^2 \rho e_3 = -\nabla P, \\ \partial_t \rho + v \cdot \nabla \rho - \nu' \Delta \rho = 0, \\ \text{div } v = 0. \end{cases}
$$
 (18)

Explicit stationary solution: $(\bar{V}_{\varepsilon}, \bar{P}_{\varepsilon})$ with $\bar{P}_{\varepsilon}(x_3) = \bar{P}_{0,\varepsilon} - \kappa^2 \bar{\rho}_{0,\varepsilon} x_3 + \frac{x_3^2}{2\varepsilon^2},$

$$
\bar{V}_{\varepsilon}(x_3) = \left(\begin{array}{c} 0 \\ \bar{\rho}_{\varepsilon}(x_3) \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \bar{\rho}_{0,\varepsilon} - \frac{x_3}{\varepsilon^2 \kappa^2} \end{array}\right),
$$

∢ 何 ▶ イ ヨ ▶ イ ヨ ▶ ..

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Change of variable: solutions near $(\bar{V}_{\varepsilon}, \bar{P}_{\varepsilon})$: $(V_{\varepsilon}, P_{\varepsilon}) = (V_{\varepsilon}, \rho_{\varepsilon}, P_{\varepsilon})$ solves [\(18\)](#page-39-1) if, and only if, $(U_{\varepsilon}, \Phi_{\varepsilon}) = (V_{\varepsilon}, \theta_{\varepsilon}, \Phi_{\varepsilon})$ solves (S_{ε}) (S_{ε}) (S_{ε}) , where:

$$
\theta_{\varepsilon}(x) \stackrel{\text{def}}{=} \varepsilon \kappa^2 (\rho_{\varepsilon}(x) - \bar{\rho}_{\varepsilon}(x_3)), \quad \Phi_{\varepsilon}(x) = \varepsilon (P_{\varepsilon}(x) - \bar{P}_{\varepsilon}(x_3)).
$$

$$
\left[\text{that is }\mathsf{V}_{\varepsilon}(x)=\left(\begin{array}{c} \mathsf{v}_{\varepsilon}(x) \\ \rho_{\varepsilon}(x) \end{array}\right)=\left(\begin{array}{c} 0+\mathsf{v}_{\varepsilon}(x) \\ \bar{\rho}_{\varepsilon}(x_3)+\frac{\theta_{\varepsilon}(x)}{\varepsilon\kappa^2} \end{array}\right)\right],
$$

Put differently, aside from its own geophysical interest, studying (S_{ε}) (S_{ε}) (S_{ε}) provides solutions for the Boussinesg system [\(18\)](#page-39-1) near the explicit vertically stratified solution $(\bar{V}_{\varepsilon}, \bar{P}_{\varepsilon})$.

∢ ロ ▶ (何) (ミ) (ミ) (

The previous theorems can be rewritten as asymptotics results for the classical Boussinesq system as follows:

Theorem: Global strong solutions for Boussinesq

With the previous assumptions, for any $\varepsilon \in]0, \varepsilon_0]$, there exists a unique global strong solution $V_{\varepsilon} = (v_{\varepsilon}, \rho_{\varepsilon})$ to the Boussinesq system corresponding to the following initial data:

$$
V_{\varepsilon}|_{t=0} = \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \rho_{0,\varepsilon} - \frac{x_3}{\varepsilon^2 \kappa^2} \end{array}\right) + \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \frac{\widetilde{\theta}_0(x_3)}{\varepsilon \kappa^2} \end{array}\right) + \left(\begin{array}{c} \widetilde{v}_0^h(x) + v_{0,osc,\varepsilon}^h(x) \\ v_{0,osc,\varepsilon}^3(x) \\ \frac{\theta_{0,osc,\varepsilon}(x)}{\varepsilon \kappa^2} \end{array}\right).
$$

∢ ロ ▶ (何) (ミ) (ミ) (

 QQ

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Moreover, we have an **asymptotic expansion** of the solution $V_{\varepsilon}=(v_{\varepsilon},\rho_{\varepsilon})$ when ε goes to zero: if $U_{0,\varepsilon,osc}$ is of size $\varepsilon^{-\gamma}$ there exist some $K > 0$ and a four-component function D_{ε} such that,

$$
\|D_\varepsilon\|_{L^2(\mathbb{R}_+,L^\infty(\mathbb{R}^3))} \leq \mathbb{D}_0\varepsilon^K, \text{ and}
$$

$$
V_\varepsilon(t,x) = \begin{pmatrix} D^h_\varepsilon(t,x) + \widetilde{v}^h(t,x) \\ D^3_\varepsilon(t,x) \\ \bar{\rho}_\varepsilon(x_3) + \frac{\widetilde{\theta}(t,x_3) + D^4_\varepsilon(t,x)}{\varepsilon\kappa^2} \end{pmatrix}.
$$

This means that:

$$
V_{\varepsilon}(t,x) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \bar{\rho}_{0,\varepsilon} - \frac{x_3}{\varepsilon^2 \kappa^2} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{\tilde{\theta}(t,x_3)}{\varepsilon \kappa^2} \end{pmatrix} + \begin{pmatrix} \tilde{v}^h(t,x) + \mathcal{O}(\varepsilon^K) \\ \mathcal{O}(\varepsilon^K) \\ \mathcal{O}(\varepsilon^{K-1}) \end{pmatrix}.
$$

Frédéric Charve Asymptotics for the strong solutions of the strongly stratified Boussines

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Precise statement in the case $\nu = \nu'$

Stating precisely the previous result requires that we introduce the following waves (As $\nu = \nu'$, $L = \nu \Delta$.):

$$
\begin{cases} \partial_t W_{\varepsilon} - \nu \Delta W_{\varepsilon} + \frac{1}{\varepsilon} \mathbb{P} \mathcal{B} W_{\varepsilon} = \widetilde{G}, \\ W_{\varepsilon|t=0} = U_{0,\varepsilon,\text{osc}}, \end{cases}
$$
(19)

which

- take advantage of dispersion,
- allow to "eat" the constant external force term \vec{G} (by making it oscillate/disperse at infinity).

≮ロト (何) (日) (日)

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Precise statement in the case $\nu = \nu'$

Global existence and convergence when $\nu = \nu'$, FC CPDE '24

For all $\nu, \mathbb{C}_0 > 0$, $\delta \in]0, \frac{1}{8}$ $\frac{1}{8}$], \widetilde{v}_0^h , $\widetilde{\theta}_0$ and $U_{0,\varepsilon,osc}$ with,

$$
\|\widetilde{v}_0^h\|_{H^{\frac{1}{2}+\delta}(\mathbb{R}^3)}\leq \mathbb{C}_0\quad \text{and } \|\widetilde{\theta}_0\|_{\dot{B}^{-\frac{3}{4}}_{2,1}(\mathbb{R})\cap \dot{B}^{-\frac{1}{4}+\delta}_{2,1}(\mathbb{R})}\leq \mathbb{C}_0,
$$

then:

1- There exist $m_0, \varepsilon_0 > 0$ such that if for some $c > 0$ (as small as we want)

$$
\|U_{0,\varepsilon,\mathrm{osc}}\|_{\dot{H}^{\frac{1}{2}-c\delta}\cap\dot{H}^{\frac{1}{2}+\delta}}\leq m_0\varepsilon^{-\frac{\delta}{2}},
$$

then for any $\varepsilon \in]0, \varepsilon_0]$, there exists a global solution of (S_{ε}) (S_{ε}) (S_{ε}) and $D_{\varepsilon} \in \dot{E}^0 \cap \dot{E}^{\frac{1}{2}}$.

イロ トラ 河 トラ ミュートラン

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Precise statement in the case $\nu = \nu'$

2- If there exists a function $m(\varepsilon) \xrightarrow[\varepsilon \to 0]{} 0$ such that for some $c > 0$

$$
||U_{0,\varepsilon,osc}||_{\dot{H}^{\frac{1}{2}-c\delta}\cap\dot{H}^{\frac{1}{2}+\delta}} \leq m(\varepsilon)\varepsilon^{-\frac{\delta}{2}},
$$

then if we define $\delta_{\varepsilon} = D_{\varepsilon} - W_{\varepsilon}$, there exists $\mathbb{D}_0 = \mathbb{D}_0(\nu, \mathbb{C}_0, \delta) > 0$ such that:

$$
\|\delta_{\varepsilon}\|_{\dot{E}^0\cap\dot{E}^{\frac{1}{2}}}\leq\mathbb{D}_0\max\left(\varepsilon^{\frac{\delta}{2}},m(\varepsilon)\right)\underset{\varepsilon\to 0}{\longrightarrow}0.
$$

∢ロ ▶ ∢母 ▶ ∢ ヨ ▶ ∢ ヨ ▶ ↓

[Strong solutions](#page-37-0) [Results for the Boussinesq system](#page-39-0)

Precise statement in the case $\nu = \nu'$

3- Finally, if for some $c>0$ and $\gamma\in]0,\frac{\delta}{2}$ $\frac{0}{2}$ we have

 $\|U_{0,\varepsilon,\rm osc}\|_{\dot H^{\frac{1}{2}-c\delta}\cap\dot H^{\frac{1}{2}+\delta}}\leq \mathbb C_0 \varepsilon^{-\gamma},$

then

$$
\|\delta_\varepsilon\|_{\dot{E}^0\cap\dot{E}^{\frac{1}{2}+\frac{\delta}{2}-\gamma}}\leq \mathbb{D}_0\varepsilon^{\frac{\delta}{2}-\gamma},
$$

and for any $k \in]0,1[$ (as close to 1 as we wish), there exists $\mathbb{D}_0 = \mathbb{D}_0(\nu, \mathbb{C}_0, \delta, k) > 0$ such that:

$$
||D_{\varepsilon}||_{L^2L^{\infty}}=||U_{\varepsilon}-(\widetilde{v}^h,0,\widetilde{\theta})||_{L^2L^{\infty}}\leq \mathbb{D}_0\varepsilon^{k(\frac{\delta}{2}-\gamma)}.
$$

イロメ イ押メ イヨメ イヨメー

性

Ideas of the proof:

Everything relies on a bootstrap argument on the quantity $\delta_{\varepsilon} = D_{\varepsilon} - W_{\varepsilon}$, which satisfies:

$$
\begin{cases} \partial_t \delta_{\varepsilon} - \nu \Delta \delta_{\varepsilon} + \frac{1}{\varepsilon} \mathbb{P} \mathcal{B} \delta_{\varepsilon} = \sum_{i=1}^{10} G_i, \\ \delta_{\varepsilon | t = 0} = 0, \end{cases}
$$
 (20)

where:

$$
\begin{cases}\nG_1 \stackrel{\text{def}}{=} - \mathbb{P}(\delta_{\varepsilon} \cdot \nabla \delta_{\varepsilon}), & G_2 \stackrel{\text{def}}{=} - \mathbb{P}((\delta_{\varepsilon} \cdot \nabla \widetilde{v}^h, 0, 0)), \\
G_3 \stackrel{\text{def}}{=} - \mathbb{P}(\widetilde{v}^h \cdot \nabla_h \delta_{\varepsilon}), & G_4 \stackrel{\text{def}}{=} - \mathbb{P}(\delta_{\varepsilon} \cdot \nabla W_{\varepsilon}), \\
G_5 \stackrel{\text{def}}{=} - \mathbb{P}(W_{\varepsilon} \cdot \nabla \delta_{\varepsilon}), & G_6 \stackrel{\text{def}}{=} - \mathbb{P}(\widetilde{v}^h \cdot \nabla_h W_{\varepsilon}), \\
G_7 \stackrel{\text{def}}{=} - \mathbb{P}(W_{\varepsilon} \cdot \nabla \widetilde{v}^h, 0, 0), & G_8 \stackrel{\text{def}}{=} - \mathbb{P}(W_{\varepsilon} \cdot \nabla W_{\varepsilon}), \\
G_9 \stackrel{\text{def}}{=} - \mathbb{P}(0, 0, 0, \delta_{\varepsilon}^3 \cdot \partial_3 \widetilde{\theta}), & G_{10} \stackrel{\text{def}}{=} - \mathbb{P}(0, 0, 0, W_{\varepsilon}^3 \cdot \partial_3 \widetilde{\theta}).\n\end{cases}
$$
\n(21)

Ideas of the proofs: bootstrap

o Define

$$
\mathcal{T}_{\varepsilon,2} \stackrel{\text{def}}{=} \sup \Big\{ t \in [0,\, \mathcal{T}_{\varepsilon}^*[/\, \forall t' \in [0,t],\; \|\delta_\varepsilon(t')\|_{\dot{H}^{\frac{1}{2}}} \leq \frac{\nu_0}{4C}.\Big\}
$$

• Products of the form $a(x) \times \theta(x_3)$ have to be dealt carefully.

- \bullet W_e is small when viewed through special norms thanks to dispersion/Strichartz estimates $(L_t^p L_x^r)$ or $\widetilde{L}_t^p \dot{B}_{r,q}^0$ for $1 \leq p \leq 8/(1-2/r)$).
- In the external force terms, we try to make these norms appear everywhere (never using energy estimates for W_{ε}) and we obtain:

イロト イ押 トイヨ トイヨ トー

Ideas of the proof:

A priori estimates, FC CPDE '24

$$
\|\delta_{\varepsilon}(t)\|_{H^{s}}^{2} + \frac{\nu}{2} \int_{0}^{t} \|\nabla \delta_{\varepsilon}(t')\|_{H^{s}}^{2} dt' \n\leq \mathbb{D}_{0} \left(\|\nabla W_{\varepsilon}\|_{L_{t}^{2}L^{3}}^{2} + \|W_{\varepsilon}\|_{L_{t}^{4}L^{6}}^{2} + \|W_{\varepsilon}\|_{L_{t}^{2}L^{8}}^{2} + \|W_{\varepsilon}\|_{L_{t}^{8}L_{\nu,h}^{\infty,2}}^{2} \right) \n\times \exp \left\{ \mathbb{D}_{0} \left(1 + \|\nabla W_{\varepsilon}\|_{L_{t}^{2}L^{3}}^{2} + \|W_{\varepsilon}\|_{L_{t}^{4}L^{6}}^{4} + \|W_{\varepsilon}\|_{L_{t}^{\frac{2}{1-s}}L^{6}}^{2} + \|\nabla W_{\varepsilon}\|_{L_{t}^{2}L^{8}}^{2} \right) \right\}
$$
\n(22)

• Here
$$
s = \frac{1}{2}
$$
 or $s = \frac{1}{2} + \eta \delta$.

Note that we consider H^s (not the usual \dot{H}^s).

イロメ イ押メ イヨメ イヨメ

 299

∍

We show W_{ε} is small thanks to Strichartz estimates: there exists a constant $\mathbb{D}_0 = \mathbb{D}_0(\nu, \mathbb{C}_0, \delta, \eta) > 0$ such that for any $t \geq 0$,

$$
\begin{cases} \|\nabla W_{\varepsilon}\|_{L_{t}^{2}L^{3}}+\|W_{\varepsilon}\|_{L_{t}^{4}L^{6}}\leq \mathbb{D}_{0}\varepsilon^{\frac{\delta}{2}}\big(\|U_{0,\varepsilon,osc}\|_{\dot{H}^{\frac{1}{2}-c\delta}\cap\dot{H}^{\frac{1}{2}+\delta}}+1\big),\\ \|W_{\varepsilon}\|_{L_{t}^{\frac{2}{1-s}}L^{6}}\leq \mathbb{D}_{0}\varepsilon^{(1-\eta)\frac{\delta}{2}}\big(\|U_{0,\varepsilon,osc}\|_{\dot{H}^{\frac{1}{2}-c\delta}\cap\dot{H}^{\frac{1}{2}+\delta}}+1\big), \end{cases}
$$

and

$$
\varepsilon^{-\frac{1}{8}} \|W_{\varepsilon}\|_{L_{t}^{2} L^{8}} + \|\nabla W_{\varepsilon}\|_{L_{t}^{2} L^{\frac{8}{3}}} + \varepsilon^{-\frac{1}{16}} \|W_{\varepsilon}\|_{L_{t}^{8} L_{\nu,n}^{\infty,2}} \leq \mathbb{D}_{0} \varepsilon^{\frac{1}{16}} \big(\|U_{0,\varepsilon,\text{osc}}\|_{\dot{H}^{\frac{1}{2}-c\delta} \cap \dot{H}^{\frac{1}{2}+\delta}} + 1 \big). \tag{23}
$$

メラト メミト メミト

 QQ

э

End of the proof

- Injecting the previous estimates in the a priori estimates allows to close the bootstrap and prove that $T_{\varepsilon,2} = T_{\varepsilon}^* = \infty$.
- Convergence rates: $U_{\varepsilon} (\tilde{v}^h, 0, \tilde{\theta}) = \delta_{\varepsilon} + W_{\varepsilon}$, and from the energy estimates, δ_ε is bounded in $L^2_tL^\infty$ through

$$
\dot{H}^{\frac{3}{2}-\alpha}\cap \dot{H}^{\frac{3}{2}+\beta}\hookrightarrow \dot{B^{\frac{3}{2}}}_{2,1}\hookrightarrow \dot{B}^0_{\infty,1}\hookrightarrow L^\infty,
$$

 \bullet We use once more the Strichartz estimates to bound W_{ϵ} in $L_t^2 \dot{B}^0_{\infty,1}$.

イロ トラ 河 トラ モトラ モトリ

Strichartz estimates when $\nu = \nu'$

Consider:

$$
\begin{cases} \partial_t f - (\nu \Delta - \frac{1}{\varepsilon} \mathbb{P} \mathcal{B}) f = F_{ext}, \\ f_{|t=0} = f_0. \end{cases}
$$
 (24)

If $\nu = \nu'$, for all $\varepsilon > 0$, and all $\xi \in \mathbb{R}^3$, the matrix $\mathbb{B}(\xi,\varepsilon)=\nu\widehat{\Delta-\frac{1}{\varepsilon}!}$ $\frac{1}{\varepsilon} \mathbb{P}\mathcal{B}$ is diagonalizable and its eigenvalues satisfy:

$$
\begin{cases}\n\lambda_1(\varepsilon,\xi) = 0, \\
\lambda_2(\varepsilon,\xi) = -\nu|\xi|^2, \\
\lambda_3(\varepsilon,\xi) = -\nu|\xi|^2 + i\frac{|\xi_h|}{\varepsilon|\xi|}, \\
\lambda_4(\varepsilon,\xi) = \overline{\lambda_3(\varepsilon,\xi)},\n\end{cases}
$$
\n(25)

The first eigenvector does not play any role, the rest are mutually orthogonal.

Strichartz estimates when $\nu = \nu'$

Isotropic Strichartz estimates

For any $d\in\mathbb{R},\ r\geq 2,\ q\geq 1,\ \theta\in[0,1]$ and $\rho\in\big[1,\frac{4}{\theta(1-\frac{2}{r})}\big],$ there exists a constant $C = C_{p,r,\theta}$ such that for any f solving [\(24\)](#page-52-0) for initial data f_0 and external force F_{ext} both with zero divergence and vorticity (that is in the kernel of \mathbb{P}_2), then

$$
\| |D|^{d} f \|_{\widetilde{L}^{p}_{t} \dot{B}^{0}_{r,q}} \leq \frac{C_{p,r,\theta}}{\nu^{\frac{1}{p} - \frac{\theta}{4}(1-\frac{2}{r})}} \varepsilon^{\frac{\theta}{4}(1-\frac{2}{r})} \left(\|f_{0}\|_{\dot{B}^{\sigma_{1}}_{2,q}} + \|F_{ext}\|_{\widetilde{L}^{1}_{t} \dot{B}^{\sigma_{1}}_{2,q}} \right),
$$

where $\sigma_{1} = d + \frac{3}{2} - \frac{3}{r} - \frac{2}{p} + \frac{\theta}{2}(1-\frac{2}{r})$.

→ (何) > → ヨ) → → ヨ) →

Strichartz estimates when $\nu = \nu'$

Anisotropic Strichartz estimates

For any $d \in \mathbb{R}$, $m > 2$, $\theta \in [0, 1]$ and $p \in [1, \frac{8}{\theta(1-\frac{2}{m})}]$, there exists a constant $C_{p,m,\theta}$ such that for any f solving [\(24\)](#page-52-0) for initial data f_0 and external force F_{ext} such that div $f_0 = \text{div } F_{ext} = 0$ and $\omega(f_0) = \omega(F_{ext}) = 0$, then

$$
\| |D|^{d} f \|_{L_{t}^{p} L_{\nu, h}^{m, 2}} \leq \frac{C_{p, m, \theta}}{\nu^{\frac{1}{p} - \frac{\theta}{8}(1 - \frac{2}{m})}} \varepsilon^{\frac{\theta}{8}(1 - \frac{2}{m})} \left(\| f_{0} \|_{\dot{B}_{2,q}^{\sigma_{2}}} + \| F_{ext} \|_{\widetilde{L}_{t}^{1} \dot{B}_{2,q}^{\sigma_{2}}} \right),
$$
\nwhere $\sigma_{2} = d + \frac{1}{2} - \frac{1}{m} - \frac{2}{p} + \frac{\theta}{4}(1 - \frac{2}{m})$. (26)

→ (何) > → ヨ) → → ヨ) →

Thank you for your attention !

email: frederic.charve@u-pec.fr

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

 299

∍

For $0 < \alpha < R$, and $\beta \ge 0$, let us define, for any $x \in \mathbb{R}$,

$$
f_{\alpha}(x) = \frac{\alpha x}{\left(x^2 + \alpha^2\right)^{\frac{3}{2}}},
$$

and

$$
I_{\alpha,\beta}^R(\sigma) \stackrel{\text{def}}{=} \int_0^{\sqrt{R^2 - \alpha^2}} \frac{dx}{1 + \sigma(f_\alpha(x) - \beta)^2},
$$
 (27)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

 299

∍

Proposition (FC, 2023)

There exists a constant $\mathcal{C}_0>0$ such that for any $\alpha>0, \ R\geq \frac{2}{\sqrt{2}}$ $\frac{1}{3}\alpha,$

$$
\sup_{\beta \in \mathbb{R}_+} I_{\alpha,\beta}^R(\sigma) \le C_0 \frac{R^7}{\alpha^{\frac{11}{2}}} \min(1, \sigma^{-\frac{1}{4}}). \tag{28}
$$

Moreover, the exponent $-\frac{1}{4}$ $\frac{1}{4}$ is optimal in the sense that there exist $c_0, \sigma_0 > 0$ such that for any $R \geq$ √ $\frac{\sqrt{3}}{2}$ $\frac{3}{2}\alpha$ and $\sigma \geq \sigma_0$,

$$
\sup_{\beta \in \mathbb{R}_+} I^R_{\alpha,\beta}(\sigma) \geq c_0 \sigma^{-\frac{1}{4}} \alpha^{\frac{3}{2}}.
$$

≮ロト (何) (日) (日)