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The problem:

Consider the Cauchy problem for a semilinear heat equation{
∂tu −∆u = f (u) in (0,∞)× RN

u(0, x) = u0(x) in RN
(1)

where

u(t, x) : (0,∞)× RN → R unknown function

f : R → R continuous: nonlinearity

u0 given initial data.
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Bounded initial data:

Assume

• initial data u0 ∈ L∞(RN)

• nonlinear term f ∈ C 1(R) with f (0) = 0

Then there exists time T = T (u0) > 0, and a unique solution

u ∈ L∞
(
0,T ; L∞(RN

)
of equation (1)

(see e.g. Ladyzhenskaya, Solonnikov, Ural’tseva, 1968)
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What happens if u0 /∈ L∞(RN) ?

For example u0 singular function:

First results with singular initial data:

due to Weissler (1980-81), Brezis - Cazenave (1996).

They considered: Cauchy problem with power nonlinearities

{
∂tu −∆u = |u|p−1u in (0,∞)× RN ,

u(0, x) = u0(x) in RN (2)

with 1 < p < ∞ and with initial data in the Lebesgue spaces Lq(RN)
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For such power type nonlinearities

scale invariance property

plays essential role:

If u(t, x) satisfies (2), then for any λ > 0 the scaled function

uλ = λ
2

p−1 u(λ2t, λx)

also satisfies (2).

Moreover, the Lq norm is invariant under this scaling iff

q = qc :=
N(p − 1)

2
critical exponent

Can classify existence and uniqueness results for equation (2) with respect to this
critical exponent.
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Existence and uniqueness of classical solutions

u is Lq-classical solution ⇐⇒ u ∈ C([0,T ), Lq) ∩ L∞
loc((0,T ), L∞), u(t) → u0, t → 0.
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When q ≥ p , besides classical solutions, one can consider

• u is a mild solution ⇐⇒

{u ∈ C ([0,T ); Lq)

u(t) = et∆u0 +

∫ t

0

e(t−s)∆|u|p−1u(s) ds

Recall et∆u0 is the solution of the linear heat equation with initial data u0.

Remarks:

• Any classical solution is a mild solution. Therefore, for q ≥ p and q ≥ qc = N
2
(p − 1)

there exists, at least, a mild solution.

• However, uniqueness of mild solutions in the class C ([0,T ]; Lq) fails for p = q = qc
and in N ≥ 3 this implies p = q = N

N−2
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Existence and uniqueness of mild solutions

u is a mild solution ⇐⇒

{ u ∈ C ([0,T ); Lq)

u(t) = et∆u0 +

∫ t

0

e(t−s)∆|u|pu(s) ds

Elide Terraneo Heat equation with exponential nonlinearity November 2024 8 / 28



Non-uniqueness for p = q = N
N−2 , N ≥ 3

Ni-Sacks (1985): non-uniqueness for some u0 ∈ L
N

N−2 (B1(0)), B1(0) ⊂ RN :

▶ prove existence of singular solutions u0 ∈ L
N

N−2 (B1) to

−∆u = u
N

N−2 , u > 0, u|∂B1
= 0

with u0(x) ∼ |x |−
n

n−2 (− log |x |)−
n−2
2 , as x → 0

→ us(t, x) = u0(x) is singular stationary solution to (2)

▶ beside the singular stationary solution us , by Weissler results a second classical solution
ur (t, x) with initial data u0 exists.

T. (2002): extension to the whole space RN for suitable singular data u0 (one
solution u(t) remains singular, second solution gets smoothed)
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Dimension N = 2

In dimension N = 2

p = q =
N

N − 2

becomes infinite.

Indeed, in dimension N = 2 the threshold value qc = p − 1 and for any power
nonlinearity |u|p−1u, with p > 1, the Cauchy problem is wellposed in Lq(RN), for any
q ≥ qc = p − 1 and q > 1.

Question: do similar non-uniqueness phenomena also occur in two dimensions ?

One must consider nonlinearities with higher growth than any powers:

exponential nonlinearities
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Known results for specific exponential nonlinearities in R2

First result by

Ibrahim-Jrad-Majdoub-Saanouni (Bull. Belg. Math. Soc. 2014):

They consider the following heat equation in R2: critical in regard to Trudinger
embedding {

∂tu −∆u = u(eu
2

− 1) in (0,∞)× R2

u(0, x) = u0(x)
(3)

where u0(x) ∈ H1(R2).

They prove : local existence and uniqueness for any u0 ∈ H1(R2).

Similar results for Schrödinger equation by Nakamura-Ozawa (1998),
Colliander-Ibrahim-Majdoub-Masmoudi (2009)...
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But one may expect that

heat equation (3) can be solved in spaces defined by an integrability condition such as
Lebesgue spaces or Orlicz spaces.

Trudinger embedding into Orlicz space:

H1(Ω) ⊂ LΦ(Ω), Ω ⊆ R2.

where Φ(s) = es
2

− 1, highest possible growth and where the Orlicz space LΦ =: expL2 is
defined as

expL2(R2) =
{
u ∈ L1

loc(R2)
∣∣∣ ∫

R2

(
e

(
|u(x)|

λ

)2
− 1
)
dx < ∞ for some λ > 0

}
and with norm of Luxemburg type

∥u∥expL2 := inf
{
λ > 0;

∫
R2

(
e

(
|u(x)|

λ

)2
− 1
)
dx ≤ 1

}
Remarks:

expL2(R2) ⊊ Lq(R2), for 2 ≤ q < ∞.

expL2(R2) ̸⊂ L∞(R2).
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A ”typical” example of function not bounded that belongs to expL2(R2)

u(x) :=

{
(− log |x |)

1
2 , |x | < 1

0 , |x | ≥ 1

In fact:∫
R2

(
e

(
|u|
λ

)2
− 1
)
dx = 2π

∫ 1

0

(e
1
λ2

(
log 1

r

)
− 1) r dr = 2π

∫ 1

0

(
1

r
1
λ2

− 1

)
r dr

which is finite for λ2 > 1
2
(hence u ∈ expL2).

Note also that
u ∈ expL2(R2) \ H1(R2)

Indeed ∫
B1(0)

|∇u|2dx = 2π

∫ 1

0

|ur |2r dr =
π

2

∫ 1

0

1

| log r |r 2 r dr = +∞.
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Thus, one can consider the problem (3) in the larger space

expL2(R2)

Indeed, in

▷ Ruf.-T. (2002): local existence result for small data u0 ∈ expL2(R2)

▷ Ioku (2011): global existence result for small data u0 ∈ expL2(R2) for equation (3), i.e.{
∂tu −∆u = u(eu

2

− 1) in (0,∞)× R2

u(0, x) = u0(x) in R2

where u0 ∈ expL2(R2) small
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What about u0 ∈ expL2(R2) large ?

Indeed, we were able to give a quite complete answer to this question for a specific
equation.

We provide an explicit nonlinearity

f : R+ → R+, f (s) ∼ es
2

and an (almost) explicit singular data

u0(x) ∈ expL2(Bρ) \ H1(Bρ)

such that for the equation{
∂tu −∆u = f (u) in Bρ, u(x , t) = 0 on ∂Bρ

u(0, x) = u0(x)
(4)
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Theorem (Ioku, Ruf, T. Ann. Inst. Poincaré, 2019)

The following trichotomy holds

for µu0 with 0 < µ < 1: exists unique solution

for u0: nonuniqueness (singular stationary and regularizing solution)

for µu0 with µ > 1: exists no solutions
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How are f (u) and the (almost) explicit singular data u0 defined ?

An explicit singular solution

Let

w(|x |) =
√

−2 log |x |

Then
w ∈ expL2(B1) \ H1(B1)

One calculates that w(|x |) is explicit solution to the equation

−∆u =
1

u3
eu

2

, u(|x |) > 0 (5)

or, equivalently, of

− u′′ − 1

r
u′ =

1

u3
eu

2

, (6)

(de Figueiredo - Ruf, CPAM, 1995)
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The nonlinearity

The nonlinearity f (u) = 1
u3

eu
2

is singular in the origin.

We need a nonlinearity with f (0) = 0:

so let the nonlinearity f (s) be given as follows

f (s) :=

{
1
s3

es
2

, if s ≥ β

γs2 , if 0 ≤ s ≤ β

with γ = ( 2e
5
)5/2 and β =

√
5
2
.

This function f is C 1([0,+∞), increasing and convex, f (0) = f ′(0) = 0.
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The almost explicit singular solution

Note that the function
w(r) =

√
−2 log r

satisfies
w(r) ≥ β ⇐⇒ r ≤ r0

Let us consider the following initial value problem
− v ′′ − 1

r
v ′ = γv 2, r ∈ [r0,+∞)

v(r0) = β = w(r0)

v ′(r0) = w ′(r0)

(7)

Now show using sooting method:
there exists a first zero ρ > r0 of the solution v(r) of equation (7)
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Then

u0(x) =

{
w(|x |), 0 < |x | < r0

v(|x |), r0 ≤ |x | < ρ

solves equation

− u′′ − 1

r
u′ = f (u) (8)

on (0, ρ), with u0(ρ) = 0.

Finally show that the singular solution u0 satisfies the elliptic equation

−∆u = f (u) in Bρ(0) , u|∂Bρ = 0

in the distributional sense in Bρ(0):∫
Bρ(0)

u0∆φ+ f (u0)φf (u0)dx = 0

for all φ ∈ C∞
0 (Bρ(0))

With this singular solution u0 one proves theTheorem
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A related result

Ibrahim-Kikuchi-Nakanishi-Wei (Math. Ann. 2021):

They consider the nonlinearity

f (u) = ueu
2

prove existence of a singular solution to −∆u = f (u)

with u0(x) =
√

−2 log |x | − 2 log(−2 log |x |) + O

(
log(− log |x|)√

− log |x|

)
, as x → 0

and obtain a similar non-uniqueness result in R2
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Generalizations

Can one obtain singular solutions for any f (u) of the form:

f (u) = ureu
2

, r ∈ R?

Actually, more is true !

Theorem (Fujishima-Ioku-Ruf-T., 2024 - Singular solutions)

1) For q > 1 and r ∈ R , there exists a singular solution U (locally around the origin) of

−∆u = ureu
q

satisfying

U(x) =

(
log

1

|x |2 − 2q + r − 1

q
log log

1

|x |2 + log
4(q − 1)

q2

) 1
q

+ O

(
log(− log |x |)
(− log |x |)2−

1
q

)
, as x → 0

Elide Terraneo Heat equation with exponential nonlinearity November 2024 22 / 28



Theorem ( Fujishima-Ioku-Ruf-T., 2024 - Singular solutions)

2) For −∆u = ee
u

there exists a singular solution U (locally around the origin) satisfying

U(x) = log [− logw − log(− logw)] + O

(
log(− logw)

(− logw)2

)
,

as x → 0, where

w =
1

4
|x |2

(
log

1

|x |2 + 1

)
.

Remarks

• Our result contains the previous ones of Ioku-Ruf-T and Ibrahim-Kikuchi-Nakanishi-Wei
respectively for r = −3, q = 2 and for r = 1, q = 2.

• The same result holds also for any f ∈ C 1([0,+∞)), with f (u) = ureu
q

, with r ∈ R
and q > 1 or f (u) = ee

u

for large value of u.

• A similar result can be obtained for a large class of nonlinearity. For example we are
able to find singular solution for nonlinearities f (u) = eu

q+ur , q > 1, q > 2r , r > 0.

However we are not able to deal with f (u) = eu
q(log u)r , q > 1, r ∈ R, r ̸= 0.
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There is no general method for finding singular solutions !

However, we have a family of

model exponential type nonlinearities with explicit singular solutions (N=2)

Indeed, following the example of de Figueiredo-Ruf we observe :

v(x) = (−2 log |x |)
1
q : singular solution to

−∆v =
4

qq′
1

v 2q−1
ev

q

, q > 1

v(x) = log(−2 log |x |) : singular solution to

−∆v = 4
1

e2v
ee

v
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Proof of Theorem - Singular solutions

The proof relies on a general theorem, which deals with more general nonlinearities and
whose statement is quite complicated.

The main idea is:

• Let f (u) = ureu
q

, with q > 1 be a given nonlinearity.

Associate to f a model nonlinearity g which is close to f . In particular if

F (s) =

∫ ∞

s

1

f (η)
dη < ∞, s > 0 and G(s) =

∫ ∞

s

1

g(η)
dη < ∞, s > 0

then
lim
s→∞

f ′(s)F (s) = lim
s→∞

g ′(s)G(s) = 1

with the same rate of convergence.
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• Fujishima-Ioku (2018): if the function v satisfies −∆v = g(v) then the function

ũ := F−1[G(v)]

satisfies

−∆ũ = f (ũ) +
|∇ũ|2

f (ũ)F (ũ)

[
f ′(ũ)F (ũ)− g ′(v)G(v)

]
Therefore, we guessed that it should exist a solution u of −∆u = f (u) close to ũ if the
remainder term is small.

• Show: there exists small θ(x) such that

U(x) = ũ(x) + θ(x)

is singular and solves −∆u = f (u).
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Non-uniqueness result for general f (u)

Let f ∈ C 1([0,∞) with f (u) = ureu
q

, q > 1 r ∈ R or f (u) = ee
u

, for large value of u.

By shooting method one can continue this singular solution to a solution u0 of

−∆u = f (u), u|∂BR = 0

such that u0(x) ∼ U(x) as x → 0.

Using this singular solution u0 as initial data, one gets nonuniqueness

Theorem (Fujishima, Ioku, Ruf, T. 2024 - Non-uniqueness)

Let f ∈ C 1([0,∞) with f (u) = ureu
q

, q > 1 r ∈ R or f (u) = ee
u

, for large value of u.

For the equation {
∂u
∂t

−∆u = f (u) , in (0,T )× BR , u|∂BR = 0
u(0, x) = u0(x)

(9)

one has nonuniqueness : there exist a singular stationary solution and a regularizing
solution.
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Thank you for your attention !

Happy birthday Pierre Gilles !
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