Comportement en temps long du système de Stokes-transport

Anne-Laure Dalibard (Sorbonne Université & ENS Paris) with Julien Guillod and Antoine Leblond

Conférence en l'honneur de Pierre Gilles Lemarié-Rieusset 7 novembre 2024, Paris

[Introduction](#page-2-0)

[Long time stability](#page-11-0)

[Boundary layer formation](#page-18-0)

[Perspectives](#page-25-0)

Outline

[Introduction](#page-2-0)

[Long time stability](#page-11-0)

[Boundary layer formation](#page-18-0)

[Perspectives](#page-25-0)

Context and motivation

Goal: Study long-time behavior of stratified fluids in the presence of boundaries.

Motivation: oceanography: on large scales, fluid is described by Boussinesq/primitive equations.

Stratification plays an important role in the stability, but interaction with boundary still poorly understood.

Today's talk: step towards understanding interplay between stratification/solid boundaries, with simplified model.

The Stokes-transport system

Variables: density ρ , velocity $\mathbf{u} : [0,\infty) \times \Omega \to \mathbf{R}^2$:

(ST)

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0$ $-\Delta$ u + $\nabla p = -\rho \mathbf{e}_z$ div $\mathbf{u} = 0$ $\rho|_{t=0}=\rho_0$

Domain and BC: $\Omega = T \times (0, 1)$, no-slip BC for **u**. Derivation of the system:

- \triangleright Boussinesq \rightarrow neglect advection (large Prandtl number) [Grayer II, 2024; Lazar, Xue, Zhang, 2024];
- ▶ Homogenization of sedimenting particle systems [Höfer, 2018; Mecherbet, 2021];

Remark: Steady states: $\rho = \rho(z)$, $\mathbf{u} = 0$. **GWP:** [Leblond, 2022], with $\rho_0 \in L^{\infty}$.

Related works

\blacktriangleright IPM system:

Replace Stokes with Darcy's law $u + \nabla p = -\rho \mathbf{e}_z$:

- ▶ LWP in Sobolev spaces [Córdoba, Gancedo, Orive, 2007]: much harder than for [\(ST\)](#page-4-0);
- \triangleright Long time behavior around stratified eq.: [Elgindi, 2017] (no boundary), [Castro, Córdoba, Lear, 2019; Park 2024].
- \triangleright Boussinesg system: with damping \triangleright Castro, Córdoba, Lear, 2019], with viscosity [Park 2024].
- Interface problem: LWP $\rho_0 = \mathbf{1}_{z < \eta_0(x)}$, long-time stability of $\mathbf{1}_{z< z_{0}}$ [Gancedo, Granero-Belinchón, Salguero, 2022].
- \triangleright Low regularity instability: growth of Sobolev norms for small H^{2-} perturbations of stratified data [Kiselev & Yao, 2021] (for IPM, extended to [\(ST\)](#page-4-0) by [Leblond, 2024]).

About long time stability

Look at solutions around profile $\rho_s(z) = 1 - z$. **Remark:** decay of energy \rightarrow expect stability. **Other works in similar setting:** IPM with $\rho_0 - \rho_s \in H_0^k$ [Castro, Córdoba, Lear, '19; Park '24]

$$
\|\rho(t)-\rho_{\infty}(z)\|_{L^2}\lesssim \frac{\|\rho_0-\rho_s\|_{H^k}}{t^{k/2}}.
$$

 \rightarrow Arbitrarily high decay for smooth enough perturbations. Remark: same result/techniques probably work for Stokes or Boussinesq with slip BC. Decay rate $t^{-k/4}$. Question: same result with no-slip BC? Answer: No!

Main results - 1 - Stability

Goal: Long time stability of profile $\rho_s = \rho_s(z)$ s.t. $\partial_z \rho_s < 0$ $(e.g. \rho_s(z) = 1 - z).$ **Assumptions on initial data:** $\|\rho_0 - \rho_s\|_{H^k} \ll 1$ for some sufficiently large k , $\partial_{\rm z}^j (\rho_0 - \rho_{\rm s})|_{\partial \Omega} = 0$, $j=0,1.$

Theorem 1: [D., Guillod, Leblond, 2023] Let $\rho^* = \rho^*(z)$ be the vertical rearrangement of ρ_0 . Then for all $t > 0$,

$$
\|\rho(t)-\rho^*\|_{L^2}\lesssim \frac{\|\rho_0-\rho_s\|_{H^k}}{1+t},
$$

$$
\|\rho(t)-\rho^*\|_{H^4}\lesssim \|\rho_0-\rho_s\|_{H^k}.
$$

"Scaling": 1 z-derivative \leftrightarrow loss of $t^{1/4}$.

Main results - 1 - Stability

Goal: Long time stability of profile $\rho_s = \rho_s(z)$ s.t. $\partial_z \rho_s < 0$ $(e.g. \rho_{s}(z) = 1 - z).$ **Assumptions on initial data:** $\|\rho_0 - \rho_s\|_{H^k} \ll 1$ for some sufficiently large k , $\partial_{\rm z}^j (\rho_0 - \rho_{\rm s})|_{\partial \Omega} = 0$, $j=0,1.$

Theorem 1: [D., Guillod, Leblond, 2023] Let $\rho^* = \rho^*(z)$ be the vertical rearrangement of ρ_0 . Then for all $t \geq 0$,

$$
\|\rho(t)-\rho^*\|_{L^2}\lesssim \frac{\|\rho_0-\rho_s\|_{H^k}}{1+t},
$$

$$
\|\rho(t)-\rho^*\|_{H^4}\lesssim \|\rho_0-\rho_s\|_{H^k}.
$$

"Scaling": 1 z-derivative \leftrightarrow loss of $t^{1/4}$.

Main results - 2 - Boundary layers hinder decay

Recall:

$$
\triangleright \rho(t) - \rho^* = O(t^{-1}) \text{ in } L^2, O(1) \text{ in } H^4.
$$

▶ 1 z-derivative \leftrightarrow loss of $t^{1/4}$.

Theorem 2: [D., Guillod, Leblond, 2023]

$$
\rho(t) - \rho^* = \rho^{\mathrm{BL}} + \rho^{\mathrm{int}}
$$

where

$$
\rho^{\mathrm{BL}} = \underbrace{t^{-1}\Theta^0(x, t^{1/4}z) + t^{-1}\Theta^1(x, t^{1/4}(1-z))}_{\text{size } t^{-9/8} \text{ in } L^2} + \text{l.o.t.}
$$

and $\Theta^j(\mathsf{x},Z)$ decay exp. as $Z\to\infty$, and

Remark: Energy concentrated in BL of size $t^{-1/4}$. Boundaries slow down decay: $\|\rho - \rho^*\|_{H^k} \sim t^{-1+\frac{k}{4}-\frac{1}{8}}.$

Main results - 2 - Boundary layers hinder decay

Recall:

$$
\triangleright \rho(t) - \rho^* = O(t^{-1}) \text{ in } L^2, O(1) \text{ in } H^4.
$$

▶ 1 z-derivative \leftrightarrow loss of $t^{1/4}$.

Theorem 2: [D., Guillod, Leblond, 2023]

$$
\rho(t) - \rho^* = \rho^{\mathrm{BL}} + \rho^{\mathrm{int}}
$$

where

$$
\rho^{\mathrm{BL}} = \underbrace{t^{-1}\Theta^0(x, t^{1/4}z) + t^{-1}\Theta^1(x, t^{1/4}(1-z))}_{\text{size } t^{-9/8} \text{ in } L^2} + \text{l.o.t.}
$$

and $\Theta^j({\mathsf x}, {\mathsf Z})$ decay exp. as ${\mathsf Z}\to\infty$, and

 $\|\rho^{\rm int}\|_{L^2} = O(t^{-2}), \quad \|\rho^{\rm int}\|_{H^8} = O(1).$

Remark: Energy concentrated in BL of size $t^{-1/4}$. Boundaries slow down decay: $\|\rho - \rho^*\|_{H^k} \sim t^{-1+\frac{k}{4}-\frac{1}{8}}.$

Outline

[Introduction](#page-2-0)

[Long time stability](#page-11-0)

[Boundary layer formation](#page-18-0)

[Perspectives](#page-25-0)

Preliminary decomposition

Ideas:

 \triangleright Separate the averaged/oscillating parts (cf. [Elgindi, 2017]):

$$
\theta:=\rho-\rho_{\mathfrak{s}}=\bar{\theta}+\theta'=\int_{\mathsf{T}}\theta+\theta';
$$

Introduce stream function ψ s.t. $u = \nabla^{\perp}\psi$, which solves

$$
\Delta^2 \psi = \partial_x \theta', \quad \psi|_{\partial \Omega} = \partial_n \psi|_{\partial \Omega} = 0.
$$

Ansatz: $\theta'(t)\to 0$, $\bar{\theta}(t,z)\to \theta_{\infty}(z)$ as $t\to\infty;$ $\|\theta\|\lesssim \|\theta_0\|\ll 1.$ **Eq.** for θ' and $\bar{\theta}$ when $\rho_s = 1 - z$:

$$
\partial_t \theta' = \partial_x \psi \underbrace{-\partial_z \bar{\theta} \partial_x \psi - (\nabla^{\perp} \psi \cdot \nabla \theta')'}_{\text{negligible}},
$$

$$
\partial_t \bar{\theta} = -\overline{\nabla^{\perp} \psi \cdot \nabla \theta'} = O(t^{-1-\delta}).
$$

Sketch of proof of stability

Structure of eq. on θ' :

$$
\partial_t \theta' = (1 - \underbrace{\partial_z \bar{\theta}}_{\ll 1}) \partial_x^2 \Delta^{-2} \theta' + Q(\theta', \theta')
$$

1. Analysis of the linear semi-group $\exp(t\partial_x^2\Delta^{-2})$:

- \blacktriangleright Algebraic decay, but no regularizing effect;
- \blacktriangleright Trade regularity/decay;

2. Bootstrap argument:

- \blacktriangleright θ' enjoys decay predicted by linear analysis;
- Quadratic term $Q(\theta', \theta')$ remains negligible;
- $\overrightarrow{\theta}$ remains small and converges as $t \to \infty$;

3. Identification of the limit:

- $\rightharpoonup \rho(t) \to \rho^*(z)$ as $t \to \infty$;
- Eevel sets of $\rho(t)$ have constant measure.

Consequence: ρ^* vertical rearrangement of ρ_0 .

Spectral analysis of linearized operator

Lemma [Leblond, 2023] ∃ orthogonal family $(\theta_{k,n})_{k \in \mathbb{Z}, n \in \mathbb{N}}$ of eigenfunctions

$$
\Delta^2 \theta_{k,n} = \lambda_{k,n} \theta_{k,n}, \quad \theta_{k,n} = \partial_n \theta_{k,n} = 0 \text{ on } \partial \Omega,
$$

and

$$
\lambda_{k,n}\simeq (k^2+n^2)^2.
$$

Consequence:

$$
\exp(\partial_x^2 \Delta^{-2} t) \theta'_0 = \sum_{k \neq 0,n} \exp\left(-\frac{k^2}{\lambda_{k,n}} t\right) \langle \theta'_0, \theta_{k,n} \rangle \theta_{k,n}.
$$

Quantitative decay estimate:

$$
\left\|\exp\left(\partial_x^2 \Delta^{-2} t\right) \theta_0'\right\|_{L^2} \lesssim t^{-1} \|\Delta^2 \partial_x^{-2} \theta_0'\|_{L^2}.
$$

- \blacktriangleright Trade regularity for decay;
- Gain $t^{1/4}$ for each (z)-derivative;
- \blacktriangleright IPM: replace Δ^2 by Δ .

Derivation of a uniform H^4 bound

Key step: prove that $\sup_t \|\theta'\|_{H^4} < \infty$. (Then linear analysis \Rightarrow decay of L^2 norm.) Back to eq.:

$$
\partial_t \theta' = (1 - \underbrace{\partial_z \bar{\theta}}_{\ll 1}) \partial_x^2 \Delta^{-2} \theta' + Q(\theta', \theta')
$$

Apply Δ^2 :

$$
\partial_t \Delta^2 \theta' = (1 - \partial_z \bar{\theta}) \partial_x^2 \theta' + \text{l.o.t.}
$$

Assumptions on θ_0 : $\theta' = \partial_n \theta' = 0$ on $\partial \Omega \to \text{IBP}.$ H^4 estimate:

$$
\frac{d}{dt} \|\Delta^2 \theta'\|_{L^2}^2 + \|\partial_x \Delta \theta'\|_{L^2}^2 \leq \text{l.o.t.}
$$

Higher decay estimates?

Key information to prove uniform H⁴ bound:

 $\theta'(t) = \partial_n \theta'(t) = 0$ on $\partial \Omega$.

 \rightarrow Preserved by the evolution. What about $\Delta^2\theta'|_{\partial\Omega}$?

$$
\partial_t \Delta^2 \theta'|_{z=0} = -6 \partial_z^3 \bar{\theta} \partial_x \partial_z^2 \psi|_{z=0} + \text{l.o.t.} \neq \mathbf{0}.
$$

Consequence: no uniform H^8 bound & no decay of H^4 norm. A Different from IPM ! [2019, Castro, Córdoba, Lear] Remark: if no-slip condition is replaced with perfect slip

 $u \cdot n = \partial_n u_{\tau} = 0$ on Ω .

then argument can be repeated: decay estimates at any order.

Summary

- **Proof of stability thanks to coercivity of linearized operator** $+$ bootstrap argument;
- \triangleright Argument cannot be exported to higher regularity: important difference with previous works on Boussinesq/IPM;
- \blacktriangleright Issue comes from boundary terms. In the case without boundary, for initial data in H^{4n+} , one can
	- 1. Derive uniform estimates on $\Delta^{2n}\theta'$;
	- 2. Deduce that $\|\theta'\|_{H^{4k}} = O(t^{k-n})$ for $0 \leq k \leq n$.

Question: actual or technical limitation?

Outline

[Introduction](#page-2-0)

[Long time stability](#page-11-0)

[Boundary layer formation](#page-18-0)

[Perspectives](#page-25-0)

Setting of the problem

Reminder:

$$
\partial_t \Delta^2 \theta' |_{\partial \Omega} = O(t^{-1-\delta}) \neq 0.
$$

Consequence: as $t \to \infty$, $\exists \gamma^0, \gamma^1$,

$$
\Delta^2 \theta' |_{\partial \Omega} \to \gamma^0, \quad \partial_n \Delta^2 \theta' |_{\partial \Omega} \to \gamma^1.
$$

Remak: γ^0 , γ^1 depend on whole nonlinear evolution. **Question:** what is the influence of γ^0 , γ^1 on the dynamic as $t \rightarrow \infty$?

A linear toy model for high order derivatives

Good toy model for $\Delta^2\theta'$:

$$
\partial_t \eta = \partial_x^2 \Delta^{-2} \eta, \quad \eta|_{|t=0} = \eta_0,
$$

and η_0 is such that

$$
\eta_0|_{\partial\Omega}\neq 0, \quad \partial_n\eta_0|_{\partial\Omega}\neq 0.
$$

Observations:

- Spectral analysis + Lebesgue theorem $\Rightarrow \eta(t) \to 0$ in L^2 ;
- ► BUT $\eta|_{\partial\Omega}$ and $\partial_{\eta}\eta|_{\partial\Omega}$ remain constant!

Idea: solution concentrates close to boundaries. Boundary layer size? Recall $\partial_z \leftrightarrow t^{1/4}$. \rightarrow BL of width $t^{-1/4}$ (self-similar behavior).

Boundary layer formation in the linear TM

$$
\partial_t \eta = \partial_x^2 \Delta^{-2} \eta, \quad \eta|_{|t=0} = \eta_0.
$$

Ansatz: close to $z = 0$,

$$
\eta \simeq H^0(x, t^{1/4}z), \quad \psi = \Delta^{-2}\partial_x \eta \simeq t^{-1}\Psi^0(x, t^{1/4}z).
$$

Plug into eq.: setting $Z = t^{1/4}z$,

$$
\frac{1}{4}Z\partial_Z H^0 = \partial_X \Psi^0, \quad \partial_Z^4 \Psi^0 = \partial_X H^0.
$$

Closed eq. for Ψ^0 :

$$
\begin{aligned} Z \partial_Z^5 \Psi^0 &= 4 \partial_x^2 \Psi^0, \\ \Psi^0_{|Z=0} &= \partial_Z \Psi^0_{|Z=0} = 0, \ \partial_Z^4 \Psi^0_{|Z=0} = \partial_x \eta_{0|z=0}. \end{aligned}
$$

Long time behavior of the linear TM

Eq on the boundary layer profiles:

(BL) $Z\partial_Z^5 \Psi^0 = 4\partial_x^2 \Psi^0$, $\Psi_{|Z=0}^0 = \partial_Z \Psi_{|Z=0}^0 = 0$, $\partial_Z^4 \Psi_{|Z=0}^0 = \partial_x \eta_{0|Z=0}$.

Lemma: ∃! sol. of [\(BL\)](#page-22-0) such that

 $|\Psi^0(\mathsf{x},\mathsf{Z})| \lesssim \exp(-c \mathsf{Z}^{4/5}).$

Define $\eta^{\mathrm{BL}} = H^0(x, t^{1/4}z) + H^1(x, t^{1/4}(1-z)) +$ l.o.t. Then $\eta-\eta^{\mathrm{BL}}...$

is an approx. sol. of $\partial_t \eta = \partial_x^2 \Delta^{-2} \eta$;

 \triangleright vanishes on $\partial\Omega$ (+ normal derivative). Conclusion: (cf. previous section:)

$$
\|\eta-\eta^{\mathrm{BL}}\|_{L^2}=O(t^{-1}).
$$

Remark: $\|\eta^{{\rm BL}}\|_{L^2} \simeq t^{-1/8}$. All the energy is focused in the BL.

Back to the Stokes-transport system...

Intuition: $\Delta^2 \theta' \sim H^0(x, t^{1/4}z)$ for $t \gg 1$, $0 < z \ll 1$. New Ansatz:

 $\theta'=t^{-1}\Theta^0(\mathsf{x},t^{1/4}z)+t^{-1}\Theta^1(\mathsf{x},t^{1/4}(1-z))+\text{l.o.t.}+\theta^{\text{int}}.$

Now, by definition of Θ^0, Θ^1 ,

$$
\Delta^2 \theta_{|\partial \Omega}^{\rm int} = \partial_n \Delta^2 \theta_{|\partial \Omega}^{\rm int} = 0.
$$

Apply first stability result to $\theta^{\rm int}$:

 $\|\Delta^4\theta^{\rm int}\|_{L^2} = O(1),\;\|\Delta^2\theta^{\rm int}\|_{L^2} = O(t^{-1}),\;\|\theta^{\rm int}\|_{L^2} = O(t^{-2})$

(To be compared with $\|\Delta^2\theta'\|_{L^2}=O(1)$, $\|\theta'\|_{L^2}=O(t^{-1})$.)

Remarks on the proof

- \blacktriangleright Need for good enough approximation \rightarrow Construction of several correctors.
- Structure of higher order BL terms Θ_j , $j \geq 1$

Linear op. (Θ_i) =quadratic terms depending on $\Theta_k, k < j$.

 \simeq Weakly nonlinear construction.

In the linear setting, expansion can be pushed at arbitrary order.

Nonlinear case: probably so, but high technical cost!

Intricate bootstrap argument on θ^{int} .

Outline

[Introduction](#page-2-0)

[Long time stability](#page-11-0)

[Boundary layer formation](#page-18-0)

[Perspectives](#page-25-0)

1. Arbitrary initial data

Question: What happens when $\theta_0|_{\partial\Omega}\neq 0$? Then $\theta(t)|_{\partial\Omega} = \theta_0|_{\partial\Omega} \neq 0 \ \forall t \geq 0.$ New Ansatz: $\theta(t, x, z) \simeq \Theta^0(x, t^{\alpha}z)$ for $0 < z \ll 1$, for $\alpha > 0$. Plug into eq. $[\dots] \rightarrow \alpha = 1/3$ and

$$
\frac{1}{3}Z\partial_Z\Theta^0 + \{\Psi^0, \Theta^0\} = 0, \quad \partial_Z^4\Psi^0 = \partial_X\Theta^0.
$$

Remarks:

- ► Change of BL size $(t^{-1/3}$ vs. $t^{-1/4})$;
- \blacktriangleright Nonlinear at main order:

▶ Well-posedness of BL eq. is unclear! (Loss of derivatives?) Questions: WP of the BL eq. ? Justification of the Ansatz?

2. Boussinesq system with no-slip BC

$$
\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla p - \Delta \mathbf{u} = -\rho \mathbf{e}_z,
$$

$$
\partial_t \rho + \text{div}(\mathbf{u}\rho) = 0.
$$

Observation: With the same Ansatz as before, i.e.

$$
\mathbf{u} = \nabla^{\perp}\psi \simeq t^{-2}\nabla^{\perp}\Psi^{0}(x, t^{1/4}z)
$$

for $t\gg 1$, $0 < z \lesssim t^{-1/4}$,

$$
\partial_t u_1 + (\mathbf{u} \cdot \nabla) u_1 = O(t^{-1-2+\frac{1}{4}} + t^{-\frac{7}{4}-\frac{7}{4}}) = O(t^{-11/4}),
$$

$$
\Delta u_1 = O(t^{-2+\frac{1}{4}+1}) = O(t^{-3/4}) \gg t^{-11/4}.
$$

 \rightarrow Advection is negligible.

Question: Long-time behavior of Boussinesq with boundaries?

3. IPM model

Reminder: |Castro, Cordóba, Lear, 2019; Park, 2024]

- ► If $\partial_z^{2k}\theta_{0|\partial\Omega} = 0$ for $0 \le k \le k^*$: preserved by the evolution;
- If $\theta_0 \in H_0^k(\Omega)$, $k \geq 3$, $\|\theta_0\|_{H^k} \ll 1$, then $\|\rho - \rho^*\|_{L^2} \lesssim \|\theta_0\|_{H^k} t^{-k/2}.$

Question: What about the case $\theta^0_{|\partial\Omega} \neq 0$? Or $\partial^2_z\theta^0_{|\partial\Omega} \neq 0$? Conjecture:

► Same type of linear BL as for Stokes-transport when $\theta^0_{|\partial\Omega} = 0$ (size $t^{-1/2}$);

► Nonlinear BL when $\theta^0_{|\partial\Omega} \neq 0$.

4. Infinite channel

Domain: $\Omega = \mathbf{R} \times (0, 1)$, initial data $\rho_0 \in L^{\infty} \cap H_{\text{uloc}}^s$. Global well-posedness: [Leblond, 2022]. **Questions:** stability of the profile ρ_s ? Boundary layer formation? Issues:

- \triangleright Control of small horizontal frequencies (lack of spectral gap).
- \blacktriangleright What about the decomposition $\theta = \bar{\theta} + \theta'$? Notion of average?
- ▶ Long time behavior of Stokes-transport system in the presence of boundaries;
- \triangleright Stability of stratified profiles for smooth initial data s.t. $\partial_{\mathsf{z}}^k (\rho^{\mathsf{0}}-\rho_{\mathsf{s}})_{|\mathsf{d}\Omega} = \mathsf{0}, \ k=0,1,2;$
- \triangleright Boundaries slow down the convergence;
- ► Energy gets trapped in boundary layer (size $t^{-1/4}$);
- \triangleright Could be extended to other fluid models (IPM, Boussinesq).
- \triangleright One last perspective: non flat boundary???

THANK YOU FOR YOUR ATTENTION! Joyeux anniversaire!