Comportement en temps long du système de Stokes-transport

Anne-Laure Dalibard (Sorbonne Université & ENS Paris) with Julien Guillod and Antoine Leblond

Conférence en l'honneur de Pierre Gilles Lemarié-Rieusset 7 novembre 2024, Paris

Introduction

Long time stability

Boundary layer formation

Perspectives

Outline

Introduction

Long time stability

Boundary layer formation

Perspectives

Context and motivation

Goal: Study long-time behavior of stratified fluids in the presence of boundaries.

Motivation: oceanography: on large scales, fluid is described by Boussinesq/primitive equations.

Stratification plays an important role in the stability, but interaction with boundary still poorly understood.

Today's talk: step towards understanding interplay between stratification/solid boundaries, with simplified model.

The Stokes-transport system

Variables: density ρ , velocity $\mathbf{u} : [0, \infty) \times \Omega \rightarrow \mathbf{R}^2$:

(ST)

 $\begin{cases} \partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0\\ -\Delta \mathbf{u} + \nabla \rho = -\rho \mathbf{e}_z\\ \text{div } \mathbf{u} = 0\\ \rho|_{t=0} = \rho_0 \end{cases}$

Domain and BC: $\Omega = \mathbf{T} \times (0, 1)$, no-slip BC for **u**. Derivation of the system:

- Boussinesq → neglect advection (large Prandtl number) [Grayer II, 2024; Lazar, Xue, Zhang, 2024];
- Homogenization of sedimenting particle systems [Höfer, 2018; Mecherbet, 2021];

Remark: Steady states: $\rho = \rho(z)$, $\mathbf{u} = 0$. **GWP:** [Leblond, 2022], with $\rho_0 \in L^{\infty}$.

Related works

IPM system:

Replace Stokes with Darcy's law $u + \nabla p = -\rho \mathbf{e}_z$:

- LWP in Sobolev spaces [Córdoba, Gancedo, Orive, 2007]: much harder than for (ST);
- Long time behavior around stratified eq.: [Elgindi, 2017] (no boundary), [Castro, Córdoba, Lear, 2019; Park 2024].
- Boussinesq system: with damping [Castro, Córdoba, Lear, 2019], with viscosity [Park 2024].
- Interface problem: LWP ρ₀ = 1_{z<η₀(x)}, long-time stability of 1_{z<z₀} [Gancedo, Granero-Belinchón, Salguero, 2022].
- Low regularity instability: growth of Sobolev norms for small H²⁻ perturbations of stratified data [Kiselev & Yao, 2021] (for IPM, extended to (ST) by [Leblond, 2024]).

About long time stability

Look at solutions around profile $\rho_s(z) = 1 - z$. **Remark:** decay of energy \rightarrow expect stability. **Other works in similar setting:** IPM with $\rho_0 - \rho_s \in H_0^k$ [Castro, Córdoba, Lear, '19; Park '24]

$$\|
ho(t) -
ho_{\infty}(z)\|_{L^2} \lesssim rac{\|
ho_0 -
ho_s\|_{H^k}}{t^{k/2}}.$$

→ Arbitrarily high decay for smooth enough perturbations. **Remark:** same result/techniques probably work for Stokes or Boussinesq with slip BC. Decay rate $t^{-k/4}$. **Question:** same result with no-slip BC? **Answer:** No!

Main results - 1 - Stability

Goal: Long time stability of profile $\rho_s = \rho_s(z)$ s.t. $\partial_z \rho_s < 0$ (e.g. $\rho_s(z) = 1 - z$). **Assumptions on initial data:** $\|\rho_0 - \rho_s\|_{H^k} \ll 1$ for some sufficiently large k, $\partial_z^j(\rho_0 - \rho_s)|_{\partial\Omega} = 0$, j = 0, 1.

Theorem 1: [D., Guillod, Leblond, 2023] Let $\rho^* = \rho^*(z)$ be the vertical rearrangement of ρ_0 . Then for all $t \ge 0$,

$$\|\rho(t) - \rho^*\|_{L^2} \lesssim \frac{\|\rho_0 - \rho_s\|_{H^k}}{1+t}, \\ \|\rho(t) - \rho^*\|_{H^4} \lesssim \|\rho_0 - \rho_s\|_{H^k}.$$

"Scaling": 1 *z*-derivative \leftrightarrow loss of $t^{1/4}$.

Main results - 1 - Stability

Goal: Long time stability of profile $\rho_s = \rho_s(z)$ s.t. $\partial_z \rho_s < 0$ (e.g. $\rho_s(z) = 1 - z$). **Assumptions on initial data:** $\|\rho_0 - \rho_s\|_{H^k} \ll 1$ for some sufficiently large k, $\partial_z^j(\rho_0 - \rho_s)|_{\partial\Omega} = 0$, j = 0, 1.

Theorem 1: [D., Guillod, Leblond, 2023] Let $\rho^* = \rho^*(z)$ be the vertical rearrangement of ρ_0 . Then for all $t \ge 0$,

$$\|\rho(t) - \rho^*\|_{L^2} \lesssim \frac{\|\rho_0 - \rho_s\|_{H^k}}{1+t}, \\ \|\rho(t) - \rho^*\|_{H^4} \lesssim \|\rho_0 - \rho_s\|_{H^k}.$$

"Scaling": 1 *z*-derivative \leftrightarrow loss of $t^{1/4}$.

Main results - 2 - Boundary layers hinder decay

Recall:

•
$$\rho(t) - \rho^* = O(t^{-1})$$
 in L^2 , $O(1)$ in H^4 .

• 1 *z*-derivative
$$\leftrightarrow$$
 loss of $t^{1/2}$

Theorem 2: [D., Guillod, Leblond, 2023]

$$\rho(t) - \rho^* = \rho^{\mathrm{BL}} + \rho^{\mathrm{int}}$$

where

$$\rho^{\text{BL}} = \underbrace{t^{-1}\Theta^0(x, t^{1/4}z) + t^{-1}\Theta^1(x, t^{1/4}(1-z))}_{\text{size } t^{-9/8} \text{ in } L^2} + \text{l.o.t.}$$

and $\Theta^j(x,Z)$ decay exp. as $Z o\infty$, and

 $\|
ho^{ ext{int}}\|_{L^2} = O(t^{-2}), \quad \|
ho^{ ext{int}}\|_{H^8} = O(1).$

Remark: Energy concentrated in BL of size $t^{-1/4}$. Boundaries slow down decay: $\|\rho - \rho^*\|_{H^k} \sim t^{-1 + \frac{k}{4} - \frac{1}{8}}$.

Main results - 2 - Boundary layers hinder decay

Recall:

•
$$\rho(t) - \rho^* = O(t^{-1})$$
 in L^2 , $O(1)$ in H^4

• 1 *z*-derivative
$$\leftrightarrow$$
 loss of $t^{1/4}$.

Theorem 2: [D., Guillod, Leblond, 2023]

$$\rho(t) - \rho^* = \rho^{\mathrm{BL}} + \rho^{\mathrm{int}}$$

where

$$\rho^{\mathrm{BL}} = \underbrace{t^{-1}\Theta^{0}(x, t^{1/4}z) + t^{-1}\Theta^{1}(x, t^{1/4}(1-z))}_{\text{size } t^{-9/8} \text{ in } L^{2}} + \text{l.o.t.}$$

and $\Theta^j(x,Z)$ decay exp. as $Z o \infty$, and

 $\|
ho^{ ext{int}}\|_{L^2} = O(t^{-2}), \quad \|
ho^{ ext{int}}\|_{H^8} = O(1).$

Remark: Energy concentrated in BL of size $t^{-1/4}$. Boundaries slow down decay: $\|\rho - \rho^*\|_{H^k} \sim t^{-1 + \frac{k}{4} - \frac{1}{8}}$.

Outline

Introduction

Long time stability

Boundary layer formation

Perspectives

Preliminary decomposition

Ideas:

Separate the averaged/oscillating parts (cf. [Elgindi, 2017]):

$$\theta := \rho - \rho_s = \overline{\theta} + \theta' = \int_{\mathsf{T}} \theta + \theta';$$

▶ Introduce stream function ψ s.t. $u = \nabla^{\perp} \psi$, which solves

$$\Delta^2 \psi = \partial_x \theta', \quad \psi|_{\partial \Omega} = \partial_n \psi|_{\partial \Omega} = 0.$$

Ansatz: $\theta'(t) \to 0$, $\overline{\theta}(t, z) \to \theta_{\infty}(z)$ as $t \to \infty$; $\|\theta\| \lesssim \|\theta_0\| \ll 1$. Eq. for θ' and $\overline{\theta}$ when $\rho_s = 1 - z$:

$$\partial_t \theta' = \partial_x \psi \underbrace{-\partial_z \bar{\theta} \partial_x \psi - (\nabla^\perp \psi \cdot \nabla \theta')'}_{\text{negligible}},$$
$$\partial_t \bar{\theta} = -\overline{\nabla^\perp \psi \cdot \nabla \theta'} = O(t^{-1-\delta}).$$

Sketch of proof of stability

Structure of eq. on θ' :

$$\partial_t \theta' = (1 - \underbrace{\partial_z \bar{\theta}}_{\ll 1}) \partial_x^2 \Delta^{-2} \theta' + Q(\theta', \theta')$$

1. Analysis of the linear semi-group $\exp(t\partial_x^2 \Delta^{-2})$:

- Algebraic decay, but no regularizing effect;
- Trade regularity/decay;

2. Bootstrap argument:

- θ' enjoys decay predicted by linear analysis;
- Quadratic term $Q(\theta', \theta')$ remains negligible;
- $\overline{\theta}$ remains small and converges as $t \to \infty$;

3. Identification of the limit:

- $\blacktriangleright \ \rho(t) \to \rho^*(z) \text{ as } t \to \infty;$
- Level sets of $\rho(t)$ have constant measure.

Consequence: ρ^* = vertical rearrangement of ρ_0 .

Spectral analysis of linearized operator

Lemma [Leblond, 2023] \exists orthogonal family $(\theta_{k,n})_{k \in \mathbb{Z}, n \in \mathbb{N}}$ of eigenfunctions

$$\Delta^2 \theta_{k,n} = \lambda_{k,n} \theta_{k,n}, \quad \theta_{k,n} = \partial_n \theta_{k,n} = 0 \text{ on } \partial\Omega,$$

and

$$\lambda_{k,n}\simeq (k^2+n^2)^2.$$

Consequence:

$$\exp(\partial_x^2 \Delta^{-2} t) \theta_0' = \sum_{k \neq 0, n} \exp\left(-\frac{k^2}{\lambda_{k,n}} t\right) \langle \theta_0', \theta_{k,n} \rangle \theta_{k,n}.$$

Quantitative decay estimate:

$$\left|\exp(\partial_x^2\Delta^{-2}t) heta_0'
ight\|_{L^2}\lesssim t^{-1}\|\Delta^2\partial_x^{-2} heta_0'\|_{L^2}$$

- Trade regularity for decay;
- ▶ Gain t^{1/4} for each (z)-derivative;
- ► IPM: replace Δ^2 by Δ .

Derivation of a uniform H^4 bound

Key step: prove that $\sup_t \|\theta'\|_{H^4} < \infty$. (Then linear analysis \Rightarrow decay of L^2 norm.) Back to eq.:

$$\partial_t \theta' = (1 - \underbrace{\partial_z \overline{\theta}}_{\ll 1}) \partial_x^2 \Delta^{-2} \theta' + Q(\theta', \theta')$$

Apply Δ^2 :

$$\partial_t \Delta^2 \theta' = (1 - \partial_z \bar{\theta}) \partial_x^2 \theta' + \text{l.o.t.}$$

Assumptions on θ_0 : $\theta' = \partial_n \theta' = 0$ on $\partial \Omega \to IBP$. H^4 estimate:

$$\frac{d}{dt} \|\Delta^2 \theta'\|_{L^2}^2 + \|\partial_x \Delta \theta'\|_{L^2}^2 \le \text{l.o.t.}$$

Higher decay estimates?

Key information to prove uniform H^4 bound:

 $\theta'(t) = \partial_n \theta'(t) = 0 \quad \text{on } \partial \Omega.$

 \rightarrow Preserved by the evolution. What about $\Delta^2 \theta'|_{\partial\Omega}$?

$$\partial_t \Delta^2 \theta'|_{z=0} = -6 \partial_z^3 \bar{\theta} \partial_x \partial_z^2 \psi|_{z=0} + \text{l.o.t.} \neq \mathbf{0}.$$

Consequence: no uniform H^8 bound & no decay of H^4 norm. \triangle Different from IPM ! [2019, Castro, Córdoba, Lear] **Remark:** if no-slip condition is replaced with perfect slip

 $\mathbf{u} \cdot \mathbf{n} = \partial_{\mathbf{n}} \mathbf{u}_{\tau} = 0 \quad \text{on } \Omega,$

then argument can be repeated: decay estimates at any order.

Summary

- Proof of stability thanks to coercivity of linearized operator + bootstrap argument;
- Argument cannot be exported to higher regularity: important difference with previous works on Boussinesq/IPM;
- Issue comes from boundary terms. In the case without boundary, for initial data in H⁴ⁿ⁺, one can
 - 1. Derive uniform estimates on $\Delta^{2n}\theta'$;
 - 2. Deduce that $\|\theta'\|_{H^{4k}} = O(t^{k-n})$ for $0 \le k \le n$.

Question: actual or technical limitation?

Outline

Introduction

Long time stability

Boundary layer formation

Perspectives

Setting of the problem

Reminder:

$$\partial_t \Delta^2 \theta'|_{\partial\Omega} = O(t^{-1-\delta}) \neq 0.$$

Consequence: as $t \to \infty$, $\exists \gamma^0, \gamma^1$,

$$\Delta^2 \theta'|_{\partial \Omega} \to \gamma^0, \quad \partial_n \Delta^2 \theta'|_{\partial \Omega} \to \gamma^1.$$

Remak: γ^0, γ^1 depend on whole nonlinear evolution. **Question:** what is the influence of γ^0 , γ^1 on the dynamic as $t \to \infty$?

A linear toy model for high order derivatives

Good toy model for $\Delta^2 \theta'$:

$$\partial_t \eta = \partial_x^2 \Delta^{-2} \eta, \quad \eta|_{|t=0} = \eta_0,$$

and η_0 is such that

$$\eta_0|_{\partial\Omega}\neq 0, \quad \partial_n\eta_0|_{\partial\Omega}\neq 0.$$

Observations:

- Spectral analysis + Lebesgue theorem $\Rightarrow \eta(t) \rightarrow 0$ in L^2 ;
- ▶ BUT $\eta|_{\partial\Omega}$ and $\partial_n \eta|_{\partial\Omega}$ remain constant!

Idea: solution concentrates close to boundaries. **Boundary layer size?** Recall $\partial_z \leftrightarrow t^{1/4}$. \rightarrow BL of width $t^{-1/4}$ (self-similar behavior).

Boundary layer formation in the linear TM

$$\partial_t \eta = \partial_x^2 \Delta^{-2} \eta, \quad \eta|_{|t=0} = \eta_0.$$

Ansatz: close to z = 0,

$$\eta \simeq H^0(x, t^{1/4}z), \quad \psi = \Delta^{-2}\partial_x \eta \simeq t^{-1}\Psi^0(x, t^{1/4}z).$$

Plug into eq.: setting $Z = t^{1/4}z$,

$$\frac{1}{4}Z\partial_Z H^0 = \partial_x \Psi^0, \quad \partial_Z^4 \Psi^0 = \partial_x H^0.$$

Closed eq. for Ψ^0 :

$$\begin{split} & Z\partial_{Z}^{5}\Psi^{0} = 4\partial_{x}^{2}\Psi^{0}, \\ & \Psi^{0}_{|Z=0} = \partial_{Z}\Psi^{0}_{|Z=0} = 0, \ \partial_{Z}^{4}\Psi^{0}_{|Z=0} = \partial_{x}\eta_{0|z=0}. \end{split}$$

Long time behavior of the linear TM

Eq on the boundary layer profiles:

(BL) $Z\partial_Z^5 \Psi^0 = 4\partial_x^2 \Psi^0, \ \Psi^0_{|Z=0} = \partial_Z \Psi^0_{|Z=0} = 0, \ \partial_Z^4 \Psi^0_{|Z=0} = \partial_x \eta_{0|z=0}.$

Lemma: $\exists !$ sol. of (BL) such that $|\Psi^0(x, Z)| \lesssim \exp(-cZ^{4/5}).$

Define $\eta^{\text{BL}} = H^0(x, t^{1/4}z) + H^1(x, t^{1/4}(1-z)) + \text{ l.o.t.}$ Then $\eta - \eta^{\text{BL}}$...

• is an approx. sol. of $\partial_t \eta = \partial_x^2 \Delta^{-2} \eta$;

• vanishes on $\partial \Omega$ (+ normal derivative).

Conclusion: (cf. previous section:)

$$\|\eta - \eta^{\mathrm{BL}}\|_{L^2} = O(t^{-1}).$$

Remark: $\|\eta^{\text{BL}}\|_{L^2} \simeq t^{-1/8}$: All the energy is focused in the BL.

Back to the Stokes-transport system...

Intuition: $\Delta^2 \theta' \sim H^0(x, t^{1/4}z)$ for $t \gg 1$, $0 < z \ll 1$. New Ansatz:

 $\theta' = t^{-1}\Theta^0(x, t^{1/4}z) + t^{-1}\Theta^1(x, t^{1/4}(1-z)) + \text{l.o.t.} + \theta^{\text{int.}}$

Now, by definition of Θ^0, Θ^1 ,

$$\Delta^2 \theta_{|\partial\Omega}^{\mathrm{int}} = \partial_n \Delta^2 \theta_{|\partial\Omega}^{\mathrm{int}} = 0.$$

Apply first stability result to θ^{int} :

 $\|\Delta^4 \theta^{\text{int}}\|_{L^2} = O(1), \ \|\Delta^2 \theta^{\text{int}}\|_{L^2} = O(t^{-1}), \ \|\theta^{\text{int}}\|_{L^2} = O(t^{-2})$

(To be compared with $\|\Delta^2 \theta'\|_{L^2} = O(1)$, $\|\theta'\|_{L^2} = O(t^{-1})$.)

Remarks on the proof

- ► Need for good enough approximation → Construction of several correctors.
- Structure of higher order BL terms Θ_j, j ≥ 1 Linear op. (Θ_i)=quadratic terms depending on Θ_k, k < j.</p>
 - \simeq Weakly nonlinear construction.
- In the linear setting, expansion can be pushed at arbitrary order.

Nonlinear case: probably so, but high technical cost!

• Intricate bootstrap argument on θ^{int} .

Outline

Introduction

Long time stability

Boundary layer formation

Perspectives

1. Arbitrary initial data

Question: What happens when $\theta_0|_{\partial\Omega} \neq 0$? Then $\theta(t)|_{\partial\Omega} = \theta_0|_{\partial\Omega} \neq 0 \ \forall t \geq 0$. **New Ansatz:** $\theta(t, x, z) \simeq \Theta^0(x, t^{\alpha}z)$ for $0 < z \ll 1$, for $\alpha > 0$. Plug into eq. [...] $\rightarrow \alpha = 1/3$ and

$$\frac{1}{3}Z\partial_Z\Theta^0 + \{\Psi^0, \Theta^0\} = 0, \quad \partial_Z^4\Psi^0 = \partial_x\Theta^0.$$

Remarks:

- Change of BL size $(t^{-1/3} \text{ vs. } t^{-1/4})$;
- Nonlinear at main order;

Well-posedness of BL eq. is unclear! (Loss of derivatives?)
 Questions: WP of the BL eq. ? Justification of the Ansatz?

2. Boussinesq system with no-slip BC

$$\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \nabla \rho - \Delta \mathbf{u} = -\rho \mathbf{e}_z, \\ \partial_t \rho + \operatorname{div}(\mathbf{u}\rho) = 0.$$

Observation: With the same Ansatz as before, i.e.

$$\mathbf{u} =
abla^{\perp} \psi \simeq t^{-2}
abla^{\perp} \Psi^0(x, t^{1/4}z)$$

for $t \gg 1$, $0 < z \lesssim t^{-1/4}$,

$$\partial_t u_1 + (\mathbf{u} \cdot \nabla) u_1 = O(t^{-1-2+\frac{1}{4}} + t^{-\frac{7}{4}-\frac{7}{4}}) = O(t^{-11/4}),$$

 $\Delta u_1 = O(t^{-2+\frac{1}{4}+1}) = O(t^{-3/4}) \gg t^{-11/4}.$

 \rightarrow Advection is negligible.

Question: Long-time behavior of Boussinesq with boundaries?

3. IPM model

Reminder: [Castro, Cordóba, Lear, 2019; Park, 2024]

- ► If $\partial_z^{2k} \theta_{0|\partial\Omega} = 0$ for $0 \le k \le k^*$: preserved by the evolution;
- ► If $\theta_0 \in H_0^k(\Omega)$, $k \ge 3$, $\|\theta_0\|_{H^k} \ll 1$, then $\|\rho \rho^*\|_{L^2} \le \|\theta_0\|_{H^k} t^{-k/2}$.

Question: What about the case $\theta_{|\partial\Omega}^0 \neq 0$? Or $\partial_z^2 \theta_{|\partial\Omega}^0 \neq 0$? **Conjecture:**

Same type of linear BL as for Stokes-transport when θ⁰_{|∂Ω} = 0 (size t^{-1/2});

• Nonlinear BL when $\theta_{\mid \partial \Omega}^{0} \neq 0$.

4. Infinite channel

Domain: $\Omega = \mathbf{R} \times (0, 1)$, initial data $\rho_0 \in L^{\infty} \cap H^s_{\text{uloc}}$. **Global well-posedness:** [Leblond, 2022]. **Questions:** stability of the profile ρ_s ? Boundary layer formation? **Issues:**

- Control of small horizontal frequencies (lack of spectral gap).
- What about the decomposition $\theta = \overline{\theta} + \theta'$? Notion of average?

- Long time behavior of Stokes-transport system in the presence of boundaries;
- Stability of stratified profiles for smooth initial data s.t. $\partial_z^k (\rho^0 \rho_s)_{|d\Omega} = 0, \ k = 0, 1, 2;$
- Boundaries slow down the convergence;
- Energy gets trapped in boundary layer (size $t^{-1/4}$);
- Could be extended to other fluid models (IPM, Boussinesq).
- One last perspective: non flat boundary???

THANK YOU FOR YOUR ATTENTION! JOYEUX ANNIVERSAIRE!